Banyan Root Structured Mg-Doped ZnO Photoanode Dye-Sensitized Solar Cells

2013 ◽  
Vol 117 (6) ◽  
pp. 2600-2607 ◽  
Author(s):  
C. Justin Raj ◽  
Kandasamy Prabakar ◽  
S. N. Karthick ◽  
K. V. Hemalatha ◽  
Min-Kyu Son ◽  
...  
2014 ◽  
Vol 25 (10) ◽  
pp. 4673-4673 ◽  
Author(s):  
İ. Polat ◽  
S. Yılmaz ◽  
E. Bacaksız ◽  
Y. Atasoy ◽  
M. Tomakin

2021 ◽  
Author(s):  
Selva Esakki E ◽  
Renuga Devi L ◽  
Sarathi S ◽  
Meenakshi Sundar S

Abstract We report a novel type of Mg-doped ZnO nanoparticles prepared on solvothermal route nanoparticles at different concentrations (2%,4%,6%, and 8%) and used Mg-ZnO as photoanode for dye-sensitized solar cells (DSSC) fabrication. DSSC using Mg-doped ZnO as a semiconductor material and natural dyes Terminalia cattappa as sensitizer were successfully produced. The structural, optical spectra of Mg-ZnO nanopowder were studied using XRD, FESEM-EDX, TEM, SAED patterns, and UV-Visible Spectra, Fourier Transform Infrared (FT-IR). The XRD results show that the crystal size also increases by increasing the dopant concentration of the Mg-doped ZnO sample. The optical spectra show the absorption of the samples increases with the increases of concentration using the UV-Visible analysis and the bandgap energy is calculated by Tauc plot. Mg-doped ZnO nanoparticles prepared at different concentrations were used for the fabrication of DSSC. Furthermore, from the J-V graph, 8% concentration is more effective than other concentrations.


2012 ◽  
Vol 60 (12) ◽  
pp. 2025-2028 ◽  
Author(s):  
Ji-Hong Kim ◽  
Kyung-Ju Lee ◽  
Ji-Hyung Roh ◽  
Sang-Woo Song ◽  
Jae-Ho Park ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4863
Author(s):  
Shahzadi Tayyaba ◽  
Muhammad Waseem Ashraf ◽  
Muhammad Imran Tariq ◽  
Maham Akhlaq ◽  
Valentina Emilia Balas ◽  
...  

In this research article, the authors have discussed the simulation, analysis, and characterization of calcium-doped zinc oxide (Ca-doped-ZnO) nanostructures for advanced generation solar cells. A comparative study has been performed to envisage the effect of Ca-doped ZnO nanoparticles (NP), seeded Ca-doped ZnO nanorods (NR), and unseeded Ca-doped ZnO NR as photoanodes in dye-sensitized solar cells. Simulations were performed in MATLAB fuzzy logic controller to study the effect of various structures on the overall solar cell efficiency. The simulation results show an error of less than 1% in between the simulated and calculated values. This work shows that the diameter of the seeded Ca-doped ZnO NR is greater than that of the unseeded Ca-doped ZnO NR. The incorporation of Ca in the ZnO nanostructure is confirmed using XRD graphs and an EDX spectrum. The optical band gap of the seeded substrate is 3.18 eV, which is higher compared to those of unseeded Ca-doped ZnO NR and Ca-doped ZnO NP, which are 3.16 eV and 3.13 ev, respectively. The increase in optical band gap results in the improvement of the overall solar cell efficiency of the seeded Ca-doped ZnO NR to 1.55%. The incorporation of a seed layer with Ca-doped ZnO NR increases the fill factor and the overall efficiency of dye-sensitized solar cells (DSSC).


Sign in / Sign up

Export Citation Format

Share Document