Understanding the Effect of Donor Layer Thickness and a MoO3Hole Transport Layer on the Open-Circuit Voltage in Squaraine/C60Bilayer Solar Cells

2013 ◽  
Vol 117 (39) ◽  
pp. 19866-19874 ◽  
Author(s):  
James W. Ryan ◽  
Thomas Kirchartz ◽  
Aurélien Viterisi ◽  
Jenny Nelson ◽  
Emilio Palomares
Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Rui He ◽  
Tingting Chen ◽  
Zhipeng Xuan ◽  
Tianzhen Guo ◽  
Jincheng Luo ◽  
...  

Abstract Wide-bandgap (wide-E g , ∼1.7 eV or higher) perovskite solar cells (PSCs) have attracted extensive attention due to the great potential of fabricating high-performance perovskite-based tandem solar cells via combining with low-bandgap absorbers, which is considered promising to exceed the Shockley–Queisser efficiency limit. However, inverted wide-E g PSCs with a minimized open-circuit voltage (V oc) loss, which are more suitable to prepare all-perovskite tandem devices, are still lacking study. Here, we report a strategy of adding 1,3,5-tris (bromomethyl) benzene (TBB) into wide-E g perovskite absorber to passivate the perovskite film, leading to an enhanced average V oc. Incorporation of TBB prolongs carrier lifetimes in wide-E g perovskite due to reduction of defects in perovskites and makes a better energy level matching between perovskite absorber and electron transport layer. As a result, we achieve the power conversion efficiency of 17.12% for our inverted TBB-doped PSC with an enhanced V oc of 1.19 V, compared with that (16.14%) for the control one (1.14 V).


2017 ◽  
Vol 629 ◽  
pp. 11-16 ◽  
Author(s):  
Wenjin Zeng ◽  
Xingming Liu ◽  
Huiping Wang ◽  
Daiqi Cui ◽  
Ruidong Xia ◽  
...  

NANO ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. 1950127 ◽  
Author(s):  
Farhad Jahantigh ◽  
S. M. Bagher Ghorashi

Perovskite solar cells have recently been considered to be an auspicious candidate for the advancement of future photovoltaic research. A power conversion efficiency (PCE) as high as 22% has been reported to be reached, which can be obtained through an inexpensive and high-throughput solution process. Modeling and simulation of these cells can provide deep insights into their fundamental mechanism of performance. In this paper, two different perovskite solar cells are designed by using COMSOL Multiphysics to optimize the thickness of each layer and the overall thickness of the cell. Electric potential, electron and hole concentrations, generation rate, open-circuit voltage, short-circuit current and the output power were calculated. Finally, PCEs of 20.7% and 26.1% were predicted. Afterwards, according to the simulation results, the role of the hole transport layer (HTL) was investigated and the optimum thickness of the perovskite was measured to be 200[Formula: see text]nm for both cells. Therefore, the spin coating settings are selected so that a coating with this thickness for cell 1 is deposited. In order to compare the performance of HTM layer, solar cells with a Spiro-OMeTAD HTM and without the HTM layer in their structure were fabricated. According to the obtained photovoltaic properties, the solar cell made with Spiro-OMeTAD has a more favorable open-circuit voltage ([Formula: see text]), short-circuit current density ([Formula: see text]), fill factor (FF) and PCE compared to the cell without the HTM layer. Also, hysteresis depends strongly on the perovskite grain size, because large average grain size will lead to an increase in the grain’s contact surface area and a decrease in the density of grain boundaries. Finally, according to the results, it was concluded that, in the presence of a hole transport layer, ion transfer was better and ion accumulation was less intense, and therefore, the hysteresis decreases.


2017 ◽  
Vol 61 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Xin Yao ◽  
Junhui Liang ◽  
Tiantian Li ◽  
Lin Fan ◽  
Biao Shi ◽  
...  

2021 ◽  
Author(s):  
Bablu K. Ghosh ◽  
Ismail Saad ◽  
Khairul A Mahmood

Abstract CdTe thin film (TF) solar cells are most promising in commercial stage photovoltaic (PV) technologies. Cell contacts and interface defects related opto-electrical losses are still vital to limit its further technological benefit. Thin film PV cells voltage and fill factor loss lessening purpose carrier selective back contact selection with band matching interface layers are essential. Beside that buffer and active layer thickness selection is vital for field assisted selective carrier collection. The suitable emitter or buffer layer thickness and band gap matching to the active layer is potential to lessen parasitic absorption and shallow recombination loss. In this purpose SCAPS software based ZnO and SnO2 TCO as well as CdS and CdSe buffer impact are numerically analyzed. The TCO, emitter, back surface field layer and metal contacts effects on electrical performance is studied. In the model, TCO and back contact barrier thickness is shown significant to progress electrical performance. Eventually, open circuit voltage Voc = 0.9757 V and 19.92% efficiency is achieved for 90 nm of ZnTe BSF with ZnO TCO and CdS emitter layer of optimized thickness.


2019 ◽  
Vol 7 (32) ◽  
pp. 18971-18979 ◽  
Author(s):  
Tian Du ◽  
Weidong Xu ◽  
Matyas Daboczi ◽  
Jinhyun Kim ◽  
Shengda Xu ◽  
...  

Reduction in p-doping of the organic hole transport layer (HTL) leads to substantial improvements in PV performance in planar p–i–n perovskite solar cells.


2017 ◽  
Vol 10 (5) ◽  
pp. 1207-1212 ◽  
Author(s):  
Juan-Pablo Correa-Baena ◽  
Wolfgang Tress ◽  
Konrad Domanski ◽  
Elham Halvani Anaraki ◽  
Silver-Hamill Turren-Cruz ◽  
...  

Dopants in the hole transport layer limit the open-circuit voltage of perovskite solar cells.


2019 ◽  
Vol 11 (24) ◽  
pp. 22021-22027 ◽  
Author(s):  
Wei Hu ◽  
Cun Yun Xu ◽  
Lian Bin Niu ◽  
Ahmed Mourtada Elseman ◽  
Gang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document