Solvation of Lithium Salts in Protic Ionic Liquids: A Molecular Dynamics Study

2014 ◽  
Vol 118 (3) ◽  
pp. 761-770 ◽  
Author(s):  
Trinidad Méndez-Morales ◽  
Jesús Carrete ◽  
Óscar Cabeza ◽  
Olga Russina ◽  
Alessandro Triolo ◽  
...  
2014 ◽  
Vol 140 (21) ◽  
pp. 214502 ◽  
Author(s):  
Borja Docampo-Álvarez ◽  
Víctor Gómez-González ◽  
Trinidad Méndez-Morales ◽  
Jesús Carrete ◽  
Julio R. Rodríguez ◽  
...  

2016 ◽  
Vol 145 (20) ◽  
pp. 204507 ◽  
Author(s):  
Volker Lesch ◽  
Hadrián Montes-Campos ◽  
Trinidad Méndez-Morales ◽  
Luis Javier Gallego ◽  
Andreas Heuer ◽  
...  

2018 ◽  
Vol 20 (18) ◽  
pp. 12767-12776 ◽  
Author(s):  
Víctor Gómez-González ◽  
Borja Docampo-Álvarez ◽  
J. Manuel Otero-Mato ◽  
Oscar Cabeza ◽  
Luis J. Gallego ◽  
...  

Hydrogen bonded protic ionic liquids improve the transport of electrochemically relevant cations to charged walls relative to aprotic ones.


2019 ◽  
Vol 123 (26) ◽  
pp. 5568-5576 ◽  
Author(s):  
Andrea Le Donne ◽  
Henry Adenusi ◽  
Francesco Porcelli ◽  
Enrico Bodo

2020 ◽  
Author(s):  
Agilio Padua ◽  
Kateryna Goloviznina ◽  
Margarida Costa Gomes ◽  
Zheng Gong

The transferable, polarizable CL&Pol force field for aprotic ionic liquids presented in our previous study (J. Chem. Theory Comput. 2019, 15, 5858, DOI: 10.1021/acs.jctc.9b00689) is extended to electrolytes, protic ionic liquids, deep eutectic solvents, and glycols. These systems are problematic in polarizable simulations because they contain either small, highly charged ions or strong hydrogen bonds, which cause trajectory instabilities due to the pull exerted on the induced dipoles. We use a Tang-Toennies function to dampen, or smear, the interactions between charges and induced dipole at short range involving small, highly charged atoms (such as hydrogen or lithium), thus preventing the "polarization catastrophe". The new force field gives stable trajectories and is validated through comparison with experimental data on density, viscosity, and ion diffusion coefficients of liquid systems of the above-mentioned classes. The results also shed light on the hydrogen-bonding pattern in ethylammonium nitrate, a protic ionic liquid, for which the literature contains conflicting views. We describe the implementation of the Tang-Toennies damping function, of the temperature-grouped Nosé-Hoover thermostat for polarizable molecular dynamics and of the periodic perturbation method for viscosity evaluation from non-equilibrium trajectories in the LAMMPS molecular dynamics code. The main result of this work is the wider applicability of the CL&Pol polarizable force field to new, important classes of fluids, achieving robust trajectories and a good description of equilibrium and transport properties in challenging systems. The transferability and fragment-based approach of CL&Pol will allow ready extension to a wide variety of protic ionic liquids, deep eutectic solvents and electrolytes.


2015 ◽  
Vol 17 (13) ◽  
pp. 8431-8440 ◽  
Author(s):  
Dietmar Paschek ◽  
Benjamin Golub ◽  
Ralf Ludwig

We report results of molecular dynamics (MD) simulations characterising the hydrogen bonding in mixtures of two different protic ionic liquids sharing the same cation: triethylammonium-methylsulfonate (TEAMS) and triethylammonium-triflate (TEATF).


2020 ◽  
Author(s):  
Agilio Padua ◽  
Kateryna Goloviznina ◽  
Margarida Costa Gomes ◽  
Zheng Gong

The transferable, polarizable CL&Pol force field for aprotic ionic liquids presented in our previous study (J. Chem. Theory Comput. 2019, 15, 5858, DOI: 10.1021/acs.jctc.9b00689) is extended to electrolytes, protic ionic liquids, deep eutectic solvents, and glycols. These systems are problematic in polarizable simulations because they contain either small, highly charged ions or strong hydrogen bonds, which cause trajectory instabilities due to the pull exerted on the induced dipoles. We use a Tang-Toennies function to dampen, or smear, the interactions between charges and induced dipole at short range involving small, highly charged atoms (such as hydrogen or lithium), thus preventing the "polarization catastrophe". The new force field gives stable trajectories and is validated through comparison with experimental data on density, viscosity, and ion diffusion coefficients of liquid systems of the above-mentioned classes. The results also shed light on the hydrogen-bonding pattern in ethylammonium nitrate, a protic ionic liquid, for which the literature contains conflicting views. We describe the implementation of the Tang-Toennies damping function, of the temperature-grouped Nosé-Hoover thermostat for polarizable molecular dynamics and of the periodic perturbation method for viscosity evaluation from non-equilibrium trajectories in the LAMMPS molecular dynamics code. The main result of this work is the wider applicability of the CL&Pol polarizable force field to new, important classes of fluids, achieving robust trajectories and a good description of equilibrium and transport properties in challenging systems. The transferability and fragment-based approach of CL&Pol will allow ready extension to a wide variety of protic ionic liquids, deep eutectic solvents and electrolytes.


2021 ◽  
Author(s):  
Agilio Padua ◽  
Kateryna Goloviznina ◽  
Margarida Costa Gomes ◽  
Zheng Gong

The polarizable CL&Pol force field presented in our previous study, Transferable, Polarizable Force Field for Ionic Liquids (J. Chem. Theory Comput. 2019, 15, 5858, DOI: 10.1021/acs.jctc.9b00689), is extended to electrolytes, protic ionic liquids, deep eutectic solvents, and glycols. These systems are problematic in polarizable simulations because they contain either small, highly charged ions or strong hydrogen bonds, which cause trajectory instabilities due to the pull exerted on the induced dipoles. We use a Tang-Toennies function to dampen, or smear, the interactions between charges and induced dipole at short range involving small, highly charged atoms (such as hydrogen or lithium), thus preventing the ``polarization catastrophe''. The new force field gives stable trajectories and is validated through comparison with experimental data on density, viscosity, and ion diffusion coefficients of liquid systems of the above-mentioned classes. The results also shed light on the hydrogen-bonding pattern in ethylammonium nitrate, a protic ionic liquid, for which the literature contains conflicting views. We describe the implementation of the Tang-Toennies damping function, of the temperature-grouped Nosé-Hoover thermostat for polarizable molecular dynamics and of the periodic perturbation method for viscosity evaluation from non-equilibrium trajectories in the LAMMPS molecular dynamics code. The main result of this work is the wider applicability of the CL&Pol polarizable force field to new, important classes of fluids, achieving robust trajectories and a good description of equilibrium and transport properties in challenging systems. The fragment-based approach of CL&Pol will allow ready extension to a wide variety of protic ionic liquids, deep eutectic solvents and electrolytes.<br>


2020 ◽  
Author(s):  
Agilio Padua ◽  
Kateryna Goloviznina ◽  
Margarida Costa Gomes ◽  
Zheng Gong

The transferable, polarizable CL&Pol force field for aprotic ionic liquids presented in our previous study (J. Chem. Theory Comput. 2019, 15, 5858, DOI: 10.1021/acs.jctc.9b00689) is extended to electrolytes, protic ionic liquids, deep eutectic solvents, and glycols. These systems are problematic in polarizable simulations because they contain either small, highly charged ions or strong hydrogen bonds, which cause trajectory instabilities due to the pull exerted on the induced dipoles. We use a Tang-Toennies function to dampen, or smear, the interactions between charges and induced dipole at short range involving small, highly charged atoms (such as hydrogen or lithium), thus preventing the "polarization catastrophe". The new force field gives stable trajectories and is validated through comparison with experimental data on density, viscosity, and ion diffusion coefficients of liquid systems of the above-mentioned classes. The results also shed light on the hydrogen-bonding pattern in ethylammonium nitrate, a protic ionic liquid, for which the literature contains conflicting views. We describe the implementation of the Tang-Toennies damping function, of the temperature-grouped Nosé-Hoover thermostat for polarizable molecular dynamics and of the periodic perturbation method for viscosity evaluation from non-equilibrium trajectories in the LAMMPS molecular dynamics code. The main result of this work is the wider applicability of the CL&Pol polarizable force field to new, important classes of fluids, achieving robust trajectories and a good description of equilibrium and transport properties in challenging systems. The transferability and fragment-based approach of CL&Pol will allow ready extension to a wide variety of protic ionic liquids, deep eutectic solvents and electrolytes.


Sign in / Sign up

Export Citation Format

Share Document