Symmetry Laws Improve Electronegativity Equalization by Orders of Magnitude and Call for a Paradigm Shift in Conceptual Density Functional Theory

2014 ◽  
Vol 119 (9) ◽  
pp. 1715-1722 ◽  
Author(s):  
László von Szentpály
2011 ◽  
pp. 45-98 ◽  
Author(s):  
Pratim Kumar Chattaraj ◽  
Ranjita Das ◽  
Soma Duley ◽  
Santanab Giri

Author(s):  
Sudip Pan ◽  
Ashutosh Gupta ◽  
Venkatesan Subramanian ◽  
Pratim K. Chattaraj

Developing effective structure-activity/property/toxicity relationships (QSAR/QSPR/QSTR) is very helpful in predicting biological activity, property, and toxicity of a given set of molecules. Regular change in these properties with the structural alteration is the main reason to obtain QSAR/QSPR/QSTR models. The advancement in making different QSAR/QSPR/QSTR models to describe activity, property, and toxicity of various groups of molecules is reviewed in this chapter. The successful implementation of Conceptual Density Functional Theory (CDFT)-based global as well as local reactivity descriptors in modeling effective QSAR/QSPR/QSTR is highlighted.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3312 ◽  
Author(s):  
Norma Flores-Holguín ◽  
Juan Frau ◽  
Daniel Glossman-Mitnik

A well-behaved model chemistry previously validated for the study of the chemical reactivity of peptides was considered for the calculation of the molecular properties and structures of the Papuamide family of marine peptides. A methodology based on Conceptual Density Functional Theory (CDFT) was chosen for the determination of the reactivity descriptors. The molecular active sites were associated with the active regions of the molecules related to the nucleophilic and electrophilic Parr functions. Finally, the drug-likenesses and the bioactivity scores for the Papuamide peptides were predicted through a homology methodology relating them with the calculated reactivity descriptors, while other properties such as the pKas were determined following a methodology developed by our group.


Sign in / Sign up

Export Citation Format

Share Document