molecular electron
Recently Published Documents


TOTAL DOCUMENTS

363
(FIVE YEARS 113)

H-INDEX

41
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Nivedita Acharjee ◽  
Haydar A Mohammad-Salim ◽  
Mrinmoy Chakraborty

Abstract The intramolecular [3+2] cycloaddition (32CA) reactions of azido alkynes leading to spirocyclic, tricyclic and bicyclic triazolooxazines has been studied within the molecular electron density theory (MEDT) at the MPWB1K/6-311G(d,p) level. The Electron localization function (ELF) characterizes the azido alkynes as zwitterionic species. Analysis of the Conceptual DFT indices allows classifying the azide moiety as the electrophilic counterpart and the alkyne as the nucleophilic one. These 32CA reactions are under kinetic control with the activation free energies of 23.4 - 26.7 kcal mol-1. Along the reaction path, the pseudoradical center is created initially at C4, consistent with the Parr function analysis, however the sequence of bond formation is controlled by the energetically feasible formation of the six membered oxazine ring. The intermolecular interactions at the TSs were characterized from the Quantum Theory of Atoms in Molecules (QTAIM) study and the Non covalent interaction (NCI) gradient isosurfaces.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6774
Author(s):  
Karolina Zawadzińska ◽  
Mar Ríos-Gutiérrez ◽  
Karolina Kula ◽  
Przemysław Woliński ◽  
Barbara Mirosław ◽  
...  

The regioselective zw-type [3 + 2] cycloaddition (32CA) reactions of a series of aryl-substituted nitrile N-oxides (NOs) with trichloronitropropene (TNP) have been both experimentally and theoretically studied within the Molecular Electron Density Theory (MEDT). Zwitterionic NOs behave as moderate nucleophiles while TNP acts as a very strong electrophile in these polar 32CA reactions of forward electron density flux, which present moderate activation Gibbs free energies of 22.8–25.6 kcal·mol−1 and an exergonic character of 28.4 kcal·mol−1 that makes them irreversible and kinetically controlled. The most favorable reaction is that involving the most nucleophilic MeO-substituted NO. Despite Parr functions correctly predicting the experimental regioselectivity with the most favorable O-CCCl3 interaction, these reactions follow a two-stage one-step mechanism in which formation of the O-C(CCl3) bond takes place once the C-C(NO2) bond is already formed. The present MEDT concludes that the reactivity differences in the series of NOs come from their different nucleophilic activation and polar character of the reactions, rather than any mechanistic feature.


2021 ◽  
Vol 17 (10) ◽  
pp. 6314-6329
Author(s):  
P. Grobas Illobre ◽  
M. Marsili ◽  
S. Corni ◽  
M. Stener ◽  
D. Toffoli ◽  
...  

Organics ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 274-286
Author(s):  
Mar Ríos-Gutiérrez ◽  
Luis R. Domingo ◽  
Fatemeh Ghodsi

The reactivity of a series of pairs of bent and linear three-atom-component (B-TACs and L-TACs) participating in [3 + 2] cycloaddition (32CA) reactions towards ethylene and electrophilic dicyanoethylene (DCE) have been studied within the Molecular Electron Density Theory. While the pseudodiradical structure of B-TACs changes to that of pseudoradical or carbenoid L-TACs upon dehydrogenation, zwitterionic B-TACs remain unchanged. Conceptual Density Functional Theory (CDFT) indices characterize five of the nine TACs as strong nucleophiles participating in polar reactions towards electrophilic ethylenes. The activation energies of the 32CA reactions with electrophilic DCE range from 0.5 to 22.0 kcal·mol−1, being between 4.3 and 9.1 kcal·mol−1 lower than those with ethylene. In general, B-TACs are more reactive than their L-TAC counterparts. A change in the regioselectivity is found in these polar 32CA reactions; in general, while B-TACs are meta regioselective, L-TACs are ortho regioselective. The geometrical parameters of the transition state structures suggest that the formation of the single bond involving the most electrophilic carbon of DCE is more advanced. A change in the asynchronicity in the reactions involving B-TACs and L-TACs is also found.


Chemistry ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 834-853
Author(s):  
Luis R. Domingo ◽  
Mar Ríos-Gutiérrez ◽  
María José Aurell

The intramolecular ionic Diels–Alder (IIDA) reactions of two dieniminiums were studied within the Molecular Electron Density Theory (MEDT) at the ωB97XD/6-311G(d,p) computational level. Topological analysis of the electron localization function (ELF) of dieniminiums showed that their electronic structures can been seen as the sum of those of butadiene and ethaniminium. The superelectrophilic character of dieniminiums accounts for the high intramolecular global electron density transfer taking place from the diene framework to the iminium one at the transition state structures (TSs) of these IIDA reactions, which are classified as the forward electro density flux. The activation enthalpy associated with the IIDA reaction of the experimental dieniminium, 8.7 kcal·mol−1, was closer to that of the ionic Diels–Alder (I-DA) reaction between butadiene and ethaniminium, 9.3 kcal·mol−1. However, the activation Gibbs free energy of the IIDA reaction was 12.7 kcal·mol−1 lower than that of the intermolecular I-DA reaction. The strong exergonic character of the IIDA reaction, higher than 20.5 kcal·mol−1, makes the reaction irreversible. These IIDA reactions present a total re/exo and si/endo diastereo selectivity, which is controlled by the most favorable chair conformation of the tetramethylene chain. ELF topological analysis of the single bond formation indicated that these IIDA reactions take place through a non-concerted two-stage one-step mechanism. Finally, ELF and atoms-in-molecules (AIM) topological analyses of the TS associated with the inter and intramolecular processes showed the great similarity between them.


Sign in / Sign up

Export Citation Format

Share Document