Resonance Raman Intensity Analysis of Vibrational and Solvent Reorganization in Photoinduced Charge Transfer

1999 ◽  
Vol 103 (35) ◽  
pp. 6891-6903 ◽  
Author(s):  
Anne Myers Kelley
1998 ◽  
Vol 109 (24) ◽  
pp. 10958-10969 ◽  
Author(s):  
Mark Lilichenko ◽  
Dietrich Tittelbach-Helmrich ◽  
Jan W. Verhoeven ◽  
Ian R. Gould ◽  
Anne B. Myers

1996 ◽  
Vol 93 ◽  
pp. 1697-1713 ◽  
Author(s):  
P Changenet ◽  
P Plaza ◽  
MM Martin ◽  
YH Meyer ◽  
W Rettig

2020 ◽  
Author(s):  
Zhengqing Tong ◽  
Margaret S. Cheung ◽  
Barry D. Dunietz ◽  
Eitan Geva ◽  
Xiang Sun

The nonequilibrium Fermi’s golden rule (NE-FGR) describes the time-dependent rate coefficient for electronic transitions, when the nuclear degrees of freedom start out in a <i>nonequilibrium</i> state. In this letter, the linearized semiclassical (LSC) approximation of the NE-FGR is used to calculate the photoinduced charge transfer rates in the carotenoid-porphyrin-C<sub>60</sub> molecular triad dissolved in explicit tetrahydrofuran. The initial nonequilibrium state corresponds to impulsive photoexcitation from the equilibrated ground-state to the ππ* state, and the porphyrin-to-C<sub>60</sub> and the carotenoid-to-C<sub>60</sub> charge transfer rates are calculated. Our results show that accounting for the nonequilibrium nature of the initial state significantly enhances the transition rate of the porphyrin-to-C<sub>60</sub> CT process. We also derive the instantaneous Marcus theory (IMT) from LSC NE-FGR, which casts the CT rate coefficients in terms of a Marcus-like expression, with explicitly time-dependent reorganization energy and reaction free energy. IMT is found to reproduce the CT rates in the system under consideration remarkably well.


Sign in / Sign up

Export Citation Format

Share Document