Investigations into the Electrostatically Induced Aggregation of Au Nanoparticles†

Langmuir ◽  
2000 ◽  
Vol 16 (23) ◽  
pp. 8789-8795 ◽  
Author(s):  
Andrew N. Shipway ◽  
Michal Lahav ◽  
Rachel Gabai ◽  
Itamar Willner
Langmuir ◽  
2014 ◽  
Vol 30 (10) ◽  
pp. 2648-2659 ◽  
Author(s):  
Zhiqiang Zhang ◽  
Haiwen Li ◽  
Feng Zhang ◽  
Yihui Wu ◽  
Zhen Guo ◽  
...  

Langmuir ◽  
2010 ◽  
Vol 26 (12) ◽  
pp. 9214-9223 ◽  
Author(s):  
Zhiqiang Zhang ◽  
Yihui Wu

Author(s):  
B.A. Shinoda ◽  
M.D. Hardison ◽  
S.F. Mohammad ◽  
H.Y.K. Chuang ◽  
R.G. Mason

The utilization of blood platelets in experimentation frequently requires their separation from blood and subsequent resuspension in media of known composition. Several methods are available for preparation of isolated platelets (1-3) by differential centrifugation or gel filtration, but most methods are tedious and time consuming. Often platelets obtained by use of such methods are in a state different functionally and ultrastructurally from that of platelets in plasma (4).Recently Mohammad, Reddick, and Mason (5) reported a method in which platelets were separated from plasma by ADP-induced aggregation, washed several times, and then incubated in a carefully selected medium that resulted in deaggregation of platelets.


Author(s):  
D.E. Loudy ◽  
J. Sprinkle-Cavallo ◽  
J.T. Yarrington ◽  
F.Y. Thompson ◽  
J.P. Gibson

Previous short term toxicological studies of one to two weeks duration have demonstrated that MDL 19,660 (5-(4-chlorophenyl)-2,4-dihydro-2,4-dimethyl-3Hl, 2,4-triazole-3-thione), an antidepressant drug, causes a dose-related thrombocytopenia in dogs. Platelet counts started to decline after two days of dosing with 30 mg/kg/day and continued to decrease to their lowest levels by 5-7 days. The loss in platelets was primarily of the small discoid subpopulation. In vitro studies have also indicated that MDL 19,660: does not spontaneously aggregate canine platelets and has moderate antiaggregating properties by inhibiting ADP-induced aggregation. The objectives of the present investigation of MDL 19,660 were to evaluate ultrastructurally long term effects on platelet internal architecture and changes in subpopulations of platelets and megakaryocytes.Nine male and nine female beagle dogs were divided equally into three groups and were administered orally 0, 15, or 30 mg/kg/day of MDL 19,660 for three months. Compared to a control platelet range of 353,000- 452,000/μl, a doserelated thrombocytopenia reached a maximum severity of an average of 135,000/μl for the 15 mg/kg/day dogs after two weeks and 81,000/μl for the 30 mg/kg/day dogs after one week.


1994 ◽  
Vol 71 (01) ◽  
pp. 091-094 ◽  
Author(s):  
M Cattaneo ◽  
B Akkawat ◽  
R L Kinlough-Rathbone ◽  
M A Packham ◽  
C Cimminiello ◽  
...  

SummaryNormal human platelets aggregated by thrombin undergo the release reaction and are not readily deaggregated by the combination of inhibitors hirudin, prostaglandin E1 (PGE1) and chymotrypsin. Released adenosine diphosphate (ADP) plays an important role in the stabilization of thrombin-induced human platelet aggregates. Since ticlopidine inhibits the platelet responses to ADP, we studied thrombin-induced aggregation and deaggregation of 14C-serotonin-labeled platelets from 12 patients with cardiovascular disease before and 7 days after the oral administration of ticlopidine, 250 mg b.i.d. Before and after ticlopidine, platelets stimulated with 1 U/ml thrombin aggregated, released about 80–90% 14C-serotinin and did not deaggregate spontaneously within 5 min from stimulation. Before ticlopidine, hirudin (5× the activity of thrombin) and PGE1 (10 μmol/1) plus chymotrypsin (10 U/ml) or plasmin (0.06 U/ml), added at the peak of platelet aggregation, caused slight or no platelet deaggregation. After ticlopidine, the extent of platelet deaggregation caused by the same inhibitors was significantly greater than before ticlopidine. The addition of ADP (10 μmol/1) to platelet suspensions 5 s after thrombin did not prevent the deaggregation of ticlopidine-treated platelets. Thus, ticlopidine facilitates the deaggregation of thrombin-induced human platelet aggregates, most probably because it inhibits the effects of ADP on platelets.


1994 ◽  
Vol 71 (01) ◽  
pp. 078-090 ◽  
Author(s):  
H L Goldsmith ◽  
M M Frojmovic ◽  
Susan Braovac ◽  
Fiona McIntosh ◽  
T Wong

SummaryThe effect of shear rate and fibrinogen concentration on adenosine diphosphate-induced aggregation of suspensions of washed human platelets in Poiseuille flow at 23°C was studied using a previously described double infusion technique and resistive particle counter size analysis (1). Using suspensions of multiple-centrifuged and -washed cells in Tyrodes-albumin [3 × 105 μl−1; (17)] with [fibrinogen] from 0 to 1.2μM, the, rate and extent of aggregation with 0.7 μM ADP in Tyrodes-albumin were measured over a range of mean transit times from 0.2 to 43 s, and at mean tube shear rates, Ḡ, = 41.9, 335 and 1,335 s−1. As measured by the decrease in singlet concentration, aggregation at 1.2 μM fibrinogen increased with increasing Ḡ up to 1,335 s1, in contrast to that previously reported in citratcd plasma, in which aggregation reached a maximum at Ḡ = 335 s−1. Without added fibrinogen, there was no aggregation at Ḡ = 41.9 s1; at Ḡ = 335 s1, there was significant aggregation but with an initial lag time, aggregation increasing further at Ḡ = 1,335 s−1. Without added fibrinogen, aggregation was abolished at all Ḡ upon incubation with the hexapeptide GRGDSP, but was almost unaffected by addition of an F(ab’)2 fragment of an antibody to human fibrinogen. Aggregation in the absence of added fibrinogen was also observed at 37°C. The activation of the multiple-washed platelets was tested using flow cytometry with the fluorescently labelled monoclonal antibodies FITC-PAC1 and FITC-9F9. It was shown that 57% of single cells in unactivated PRT expressed maximal GPIIb-IIIa fibrinogen receptors (MoAb PAC1) and 54% expressed pre-bound fibrinogen (MoAb 9F9), with further increases on ADP activation. However, incubation with GRGDSP and the F(ab’)2 fragment did not inhibit the prebound fibrinogen. Moreover, relatively unactivated cells (8% expressing receptor, 14% prebound fibrinogen), prepared from acidified cPRP by single centrifugation with 50 nM of the stable prostacyclin derivative, ZK 36 374, and resuspension in Tyrodes-albumin at 5 × 104 μl−1, aggregated with 2 and 5 μM ADP at Ḡ = 335 and 1,335 s−1 in the absence of added fibrinogen. We therefore postulate that a protein such as von Willebrand factor, secreted during platelet isolation or in flow at sufficiently high shear rates, may yield the observed shear-rate dependent aggregation without fibrinogen.


1992 ◽  
Vol 68 (05) ◽  
pp. 500-505 ◽  
Author(s):  
Ch M Samama ◽  
Ph Bonnin ◽  
M Bonneau ◽  
G Pignaud ◽  
E Mazoyer ◽  
...  

SummaryWe investigated the comparative antithrombotic properties of clopidogrel, an analogue of ticlopidine, and aspirin, using the Folts' model on femoral arteries in 22 pigs. On each animal, clopidogrel or aspirin were used to treat the thrombotic process on the left femoral artery and to prevent this process on the right femoral artery. Sequentially: an injury and stenosis were carried out on the left femoral artery; the thrombotic process was monitored with a Doppler during a 30-min observation period for cyclic flow reductions or permanent cessation of flow; after the first cyclic flow reduction occurred, clopidogrel (5 mg kg-1) or aspirin (2.5, 5, 100 mg kg-1) were injected intravenously; if cyclic flow reductions were abolished, epinephrine (0.4 µg kg-1 min-1) was injected to try to restore cyclic flow reductions and/or permanent cessation of flow; then injury and stenosis were applied on the right femoral artery. Before and after injection of clopidogrel or aspirin, ear immersion bleeding times and ex-vivo platelet aggregation were performed. Clopidogrel (n = 7) abolished cyclic flow reductions in all animals and epinephrine did not restore any cyclic flow reduction. On the right femoral artery, cyclic flow reductions were efficiently prevented, even for two injuries. Basal bleeding time (5 min 28) was lengthened (>15 min, 30 min after clopidogrel and remained prolonged even after 24 h). ADP-induced platelet aggregation was inhibited (more than 78%). Comparatively, aspirin had a moderate and no dose-dependent effect. Aspirin 2.5 mg kg-1 (n = 6) abolished cyclic flow reductions in 2 animals, CFR reoccurred spontaneously in one animal and epinephrine restored it in a second animal. Aspirin 5 mg kg-1 (n = 6) abolished cyclic flow reductions in only 3 animals and epinephrine always restored it. Aspirin 100 mg kg-1 (n = 3) was unable to abolish cyclic flow reductions. On the right femoral artery, aspirin did not significantly prevent cyclic flow reductions which occurred in all animals after one (n = 14) or two injuries (n = 1), except for one animal. Basal bleeding time was lengthened but it shortened rapidly, reaching its basal value after 24 h. ADP-induced aggregation was not significantly inhibited, whereas arachidonic acid induced aggregation was always inhibited. Clopidogrel appears as a more potent antithrombotic drug than aspirin in this model, in treating and preventing spontaneous or epinephrine-induced cyclic flow reductions and lengthening bleeding time.


Sign in / Sign up

Export Citation Format

Share Document