Design of Sustainable Product Systems and Supply Chains with Life Cycle Optimization Based on Functional Unit: General Modeling Framework, Mixed-Integer Nonlinear Programming Algorithms and Case Study on Hydrocarbon Biofuels

2013 ◽  
Vol 1 (8) ◽  
pp. 1003-1014 ◽  
Author(s):  
Dajun Yue ◽  
Min Ah Kim ◽  
Fengqi You
2018 ◽  
Vol 6 (3) ◽  
pp. 429-435 ◽  
Author(s):  
Jungmok Ma

Abstract Proper modeling of the usage phase in Life Cycle Assessment (LCA) is not only critical due to its high impact among life cycle phases but also challenging due to high variations and uncertainty. Furthermore, when multiple products can be utilized, the optimal product usage should be considered together. The robust optimal usage modeling is proposed in this paper as the framework of usage modeling for LCA with consideration of the uncertainty and optimal usage. The proposed method seeks to optimal product usage in order to minimize the environmental impact of the usage phase under uncertainty. Numerical examples demonstrate the application of the robust optimal usage modeling and the difference from the previous approaches. Highlights The robust optimal usage modeling is proposed for the usage modeling of LCA. The proposed model seeks to sustainable product usage under uncertainty. Numerical examples demonstrate the difference from the previous approaches.


2003 ◽  
Vol 3 (5-6) ◽  
pp. 283-288
Author(s):  
M. Forstmeier ◽  
T. Schipolowski ◽  
B. Goers ◽  
G. Wozny

In this paper the applicability of ultrafiltration and nanofiltration for the treatment of rinsing water in a liquid detergent plant has been investigated. Suitable membranes have been found in a membrane screening with flat sheet material, pilot experiments with industrial spiral wound modules under realistic conditions have shown the membranes' potential for reducing the COD load in the wastewater by up to 96%. Finally an optimum membrane plant structure has been derived by mixed integer nonlinear programming optimisation based on the experimental results. The membrane plant has been integrated into a model of the water network according to the concept for retrofit optimization of water networks strategy.


2014 ◽  
Vol 12 (3) ◽  
pp. 307-315 ◽  
Author(s):  
Sekar Vinodh ◽  
Gopinath Rathod

Purpose – The purpose of this paper is to present an integrated technical and economic model to evaluate the reusability of products or components. Design/methodology/approach – Life cycle assessment (LCA) methodology is applied to obtain the product’s environmental performance. Monte Carlo simulation is utilized for enabling sustainable product design. Findings – The results show that the model is capable of assessing the potential reusability of used products, while the usage of simulation significantly increases the effectiveness of the model in addressing uncertainties. Research limitations/implications – The case study has been conducted in a single manufacturing organization. The implications derived from the study are found to be practical and useful to the organization. Practical implications – The paper reports a case study carried out for an Indian rotary switches manufacturing organization. Hence, the model is practically feasible. Originality/value – The article presents a study that investigates LCA and simulation as enablers of sustainable product design. Hence, the contributions of this article are original and valuable.


2010 ◽  
Vol 97-101 ◽  
pp. 2459-2464
Author(s):  
Zhang Yong Hu ◽  
Qiang Su ◽  
Jun Liu ◽  
Hai Xia Yang

A large-scale powder-painting scheduling problem is explored. The purpose is to find out the optimal sequence of a number of batches that dynamically arrive from upstream processes within a given scheduling horizon. The objective is to enhance the production efficiency and decrease the production cost as well. To solve this problem, a mixed integer nonlinear programming (MINLP) model is constructed and an algorithm called greedy randomized adaptive search procedure (GRASP) is designed. Case studies demonstrate that the proposed approach can improve the production performance significantly.


Author(s):  
Xueping Dou ◽  
Xiucheng Guo

This paper proposes a schedule coordination method for last train service in an urban rail transit system. The method offsets and perturbs the original train schedule to reduce transfer failures across different lines, and it considers the effect of schedule adjustments. The proposed problem is formulated as a mixed-integer nonlinear programming (MINLP) model. The MINLP model is equivalently transformed into a mixed-integer linear programming (MILP) model that can be exactly solved by commercial optimization solvers. A case study based on the mass rapid transit system in Singapore was conducted. The results of the case study indicate that the train schedule that is coordinated by the developed model is capable of substantially improving operational connectivity. Therefore, the model proposed in this study can be employed as a viable tool to assist with the coordination of train schedules for public transport operators.


Sign in / Sign up

Export Citation Format

Share Document