Application of life cycle assessment and Monte Carlo simulation for enabling sustainable product design

2014 ◽  
Vol 12 (3) ◽  
pp. 307-315 ◽  
Author(s):  
Sekar Vinodh ◽  
Gopinath Rathod

Purpose – The purpose of this paper is to present an integrated technical and economic model to evaluate the reusability of products or components. Design/methodology/approach – Life cycle assessment (LCA) methodology is applied to obtain the product’s environmental performance. Monte Carlo simulation is utilized for enabling sustainable product design. Findings – The results show that the model is capable of assessing the potential reusability of used products, while the usage of simulation significantly increases the effectiveness of the model in addressing uncertainties. Research limitations/implications – The case study has been conducted in a single manufacturing organization. The implications derived from the study are found to be practical and useful to the organization. Practical implications – The paper reports a case study carried out for an Indian rotary switches manufacturing organization. Hence, the model is practically feasible. Originality/value – The article presents a study that investigates LCA and simulation as enablers of sustainable product design. Hence, the contributions of this article are original and valuable.

2018 ◽  
Vol 159 ◽  
pp. 02070
Author(s):  
Heru Prastawa ◽  
Sri Hartini ◽  
Mohamat Anshori ◽  
Siechara Hans ◽  
Christoper Wimba

The design phase is recognized as a key phase in the application of sustainable manufacturing concepts. Green Quality Function Deployment (GQFD) and modularity play an important role in product design. Green Quality Function Deployment produces technical parameters that represent the needs of consumers while taking into account environmental aspects. Modularity benefits manufacturing and flexibility in facing adjustments and changes. Integration of GQFD and modularity is expected to generate synergistic gains from both. The results are measured by life cycle assessment (LCA) to determine the impact of the product on the environment. This study shows that GQFD, modularity and LCA integration in realizing sustainable product design is worthy of consideration. The case study was conducted with the fan because the product is very needed in the tropics, such as Indonesia.


2020 ◽  
Vol 217 ◽  
pp. 115508
Author(s):  
Xiang Zhang ◽  
Lei Zhang ◽  
Ka Yip Fung ◽  
Bhavik R. Bakshi ◽  
Ka Ming Ng

Author(s):  
Qingjin Peng ◽  
Arash Hosseinpour ◽  
Peihua Gu ◽  
Zhun Fan

Sustainable product design plans the entire life cycle of a product from its raw material selection, conceptual and structural formation, manufacturing processing, and usage to its end-of-life, reuse, and recycle. The product design needs the sustainable knowledge and proper tools. Current computer-aided design systems are insufficient to represent complex relationships of product functions, structures and life cycle options. It is required for design tools to support product life cycle planning with multi-objective optimal solutions. In this paper, our experience in design of a wheelchair is used as an example to discuss the need of design tools. The aim is to define ideal tools for design of sustainable products.


2013 ◽  
Vol 572 ◽  
pp. 3-6 ◽  
Author(s):  
Awanis Romli ◽  
Paul Prickett ◽  
Rossitza Setchi ◽  
Shwe Shoe

This paper proposes a conceptual model to support sustainable product design. The approach develops an integrated multimodal decision making model which is to be introduced early in the design process, as the basis for the integration of the life cycle assessment into an Eco-design model. The model, which is based upon an adapted “House of Quality” analysis, supports designers when assessing the environmental impact of the product design. The resulting Eco-design model evaluates the sustainability of the designed product using criteria that consider the impact of manufacturing process, product usage and end-of-life (EoL) disposal strategy. This approach is demonstrated using a case study that considers the design of a set of crocodile medical forceps, in which the redesign of a new forceps is undertaken by considering all the parameters in the Eco-design model.


Sign in / Sign up

Export Citation Format

Share Document