scholarly journals Quantum Annealer Eigensolver (QAE): Combining quantum computing with high-performance computing to solve fundamental chemistry problems

Author(s):  
Alexander Teplukhin ◽  
Brian K. Kendrick
Author(s):  
Anderson Avila ◽  
Renata Hax Sander Reiser ◽  
Maurício Lima Pilla ◽  
Adenauer Correa Yamin

Exponential increase and global access to read/write memory states in quantum computing (QC) simulation limit both the number of qubits and quantum transformations which can be currently simulated. Although QC simulation is parallel by nature, spatial and temporal complexity are major performance hazards, making this a nontrivial application for high performance computing. A new methodology employing reduction and decomposition optimizations has shown relevant results, but its GPU implementation could be further improved. In this work, we develop a new kernel for in situ GPU simulation that better explores its resources without requiring further hardware. Shor’s and Grover’s algorithms are simulated up to 25 and 21 qubits respectively and compared to our previous version, to [Formula: see text] simulator and to ProjectQ framework, showing better results with relative speedups up to 4.38×, 3357.76× and 333× respectively.


2006 ◽  
Author(s):  
Kareem S. Aggour ◽  
Robert M. Mattheyses ◽  
Joseph Shultz ◽  
Brent H. Allen ◽  
Michael Lapinski

MRS Bulletin ◽  
1997 ◽  
Vol 22 (10) ◽  
pp. 5-6
Author(s):  
Horst D. Simon

Recent events in the high-performance computing industry have concerned scientists and the general public regarding a crisis or a lack of leadership in the field. That concern is understandable considering the industry's history from 1993 to 1996. Cray Research, the historic leader in supercomputing technology, was unable to survive financially as an independent company and was acquired by Silicon Graphics. Two ambitious new companies that introduced new technologies in the late 1980s and early 1990s—Thinking Machines and Kendall Square Research—were commercial failures and went out of business. And Intel, which introduced its Paragon supercomputer in 1994, discontinued production only two years later.During the same time frame, scientists who had finished the laborious task of writing scientific codes to run on vector parallel supercomputers learned that those codes would have to be rewritten if they were to run on the next-generation, highly parallel architecture. Scientists who are not yet involved in high-performance computing are understandably hesitant about committing their time and energy to such an apparently unstable enterprise.However, beneath the commercial chaos of the last several years, a technological revolution has been occurring. The good news is that the revolution is over, leading to five to ten years of predictable stability, steady improvements in system performance, and increased productivity for scientific applications. It is time for scientists who were sitting on the fence to jump in and reap the benefits of the new technology.


Sign in / Sign up

Export Citation Format

Share Document