A fluorimetric enzyme assay for the diagnosis of MPS II (Hunter disease)

2001 ◽  
Vol 24 (6) ◽  
pp. 675-680 ◽  
Author(s):  
Ya. V. Voznyi ◽  
J. L. M. Keulemans ◽  
O. P. van Diggelen
Keyword(s):  
2020 ◽  
Vol 26 (40) ◽  
pp. 5100-5109
Author(s):  
Francyne Kubaski ◽  
Filippo Vairo ◽  
Guilherme Baldo ◽  
Fabiano de Oliveira Poswar ◽  
Amauri Dalla Corte ◽  
...  

Background: Mucopolysaccharidosis type II (Hunter syndrome, or MPS II) is an X-linked lysosomal disorder caused by the deficiency of iduronate-2-sulfatase, which leads to the accumulation of glycosaminoglycans (GAGs) in a variety of tissues, resulting in a multisystemic disease that can also impair the central nervous system (CNS). Objective: This review focuses on providing the latest information and expert opinion about the therapies available and under development for MPS II. Methods: We have comprehensively revised the latest studies about hematopoietic stem cell transplantation (HSCT), enzyme replacement therapy (ERT - intravenous, intrathecal, intracerebroventricular, and intravenous with fusion proteins), small molecules, gene therapy/genome editing, and supportive management. Results and Discussion: Intravenous ERT is a well-established specific therapy, which ameliorates the somatic features but not the CNS manifestations. Intrathecal or intracerebroventricular ERT and intravenous ERT with fusion proteins, presently under development, seem to be able to reduce the levels of GAGs in the CNS and have the potential of reducing the impact of the neurological burden of the disease. Gene therapy and/or genome editing have shown promising results in preclinical studies, bringing hope for a “one-time therapy” soon. Results with HSCT in MPS II are controversial, and small molecules could potentially address some disease manifestations. In addition to the specific therapeutic options, supportive care plays a major role in the management of these patients. Conclusion: At this time, the treatment of individuals with MPS II is mainly based on intravenous ERT, whereas HSCT can be a potential alternative in specific cases. In the coming years, several new therapy options that target the neurological phenotype of MPS II should be available.


2021 ◽  
Author(s):  
Kinga Molnár ◽  
Julianna Kobolák ◽  
András Dinnyés

AbstractLysosome (L), a hydrolytic compartment of the endo-lysosomal system (ELS), plays a central role in the metabolic regulation of eukaryotic cells. Furthermore, it has a central role in the cytopathology of several diseases, primarily in lysosomal storage diseases (LSDs). Mucopolysaccharidosis II (MPS II, Hunter disease) is a rare LSD caused by idunorate-2-sulphatase (IDS) enzyme deficiency. To provide a new platform for drug development and clarifying the background of the clinically observed cytopathology, we established a human in vitro model, which recapitulates all cellular hallmarks of the disease. Some of our results query the traditional concept by which the storage vacuoles originate from the endosomal system and suggest a new concept, in which endoplasmic reticulum-Golgi intermediate compartment (ERGIC) and RAB2/LAMP positive Golgi (G) vesicles play an initiative role in the vesicle formation. In this hypothesis, Golgi is not only an indirectly affected organelle but enforced to be the main support of vacuole formation. The purposes of this minireview are to give a simple guide for understanding the main relationships in ELS, to present the storage vacuoles and their relation to ELS compartments, to recommend an alternative model for vacuole formation, and to place the Golgi in spotlight of MPS II cytopathology.


2011 ◽  
Vol 44 (06) ◽  
Author(s):  
R Brandl ◽  
R Köber ◽  
T Jahner ◽  
A Dörfelt ◽  
E Haen
Keyword(s):  

2018 ◽  
Author(s):  
Justin Eilertsen ◽  
Santiago Schnell

<div>As a case study, we consider a coupled enzyme assay of sequential enzyme reactions obeying the Michaelis--Menten reaction mechanism. The sequential reaction consists of a single-substrate, single-enzyme non-observable reaction followed by another single-substrate, single-enzyme observable reaction (indicator reaction). In this assay, the product of the non-observable reaction becomes the substrate of the indicator reaction. A mathematical analysis of the reaction kinetics is performed, and it is found that after an initial fast transient, the sequential reaction is described by a pair of interacting Michaelis--Menten equations. Timescales that approximate the respective lengths of the indicator and non-observable reactions, as well as conditions for the validity of the Michaelis--Menten equations are derived. The theory can be extended to deal with more complex sequences of enzyme catalyzed reactions.</div>


2018 ◽  
Author(s):  
Justin Eilertsen ◽  
Santiago Schnell

<div>As a case study, we consider a coupled enzyme assay of sequential enzyme reactions obeying the Michaelis-Menten reaction mechanism. The sequential reaction consists of a single-substrate, single enzyme non-observable reaction followed by another single-substrate, single enzyme observable reaction (indicator reaction). In this assay, the product of the non-observable reaction becomes the substrate of the indicator reaction. A mathematical analysis of the reaction kinetics is performed, and it is found that after an initial fast transient, the sequential reaction is described by a pair of interacting Michaelis-Menten equations. Timescales that approximate the respective lengths of the indicator and non-observable reactions, as well as conditions for the validity of the Michaelis-Menten equations are derived. The theory can be extended to deal with more complex sequences of enzyme catalyzed reactions.</div>


Sign in / Sign up

Export Citation Format

Share Document