Necessary and Sufficient Condition for Robust Stability and Stabilizability of Continuous-Time Linear Systems with Markovian Jumps

1998 ◽  
Vol 99 (2) ◽  
pp. 359-379 ◽  
Author(s):  
O. L. V. Costa ◽  
E. K. Boukas
2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Hong Shi ◽  
Guangming Xie ◽  
Wenguang Luo

The controllability issues for discrete-time linear systems with delay in state and control are addressed. By introducing a new concept, the controllability realization index (CRI), the characteristic of controllability is revealed. An easily testable necessary and sufficient condition for the controllability of discrete-time linear systems with state and control delay is established.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Hong Shi ◽  
Guangming Xie ◽  
Wenguang Luo

The controllability issues for linear discrete-time systems with delay in state are addressed. By introducing a new concept, the minimum controllability realization index (MinCRI), the characteristic of controllability is revealed. It is proved that the MinCRI of a system with state delay exists and is finite. Based on this result, a necessary and sufficient condition for the controllability of discrete-time linear systems with state delay is established.


Author(s):  
Mikołaj Busłowicz

Robust stability of positive continuous-time linear systems with delaysThe paper is devoted to the problem of robust stability of positive continuous-time linear systems with delays with structured perturbations of state matrices. Simple necessary and sufficient conditions for robust stability in the general case and in the case of systems with a linear uncertainty structure in two sub-cases: (i) a unity rank uncertainty structure and (ii) nonnegative perturbation matrices are established. The problems are illustrated with numerical examples.


1993 ◽  
Vol 25 (01) ◽  
pp. 82-102
Author(s):  
M. G. Nair ◽  
P. K. Pollett

In a recent paper, van Doorn (1991) explained how quasi-stationary distributions for an absorbing birth-death process could be determined from the transition rates of the process, thus generalizing earlier work of Cavender (1978). In this paper we shall show that many of van Doorn's results can be extended to deal with an arbitrary continuous-time Markov chain over a countable state space, consisting of an irreducible class, C, and an absorbing state, 0, which is accessible from C. Some of our results are extensions of theorems proved for honest chains in Pollett and Vere-Jones (1992). In Section 3 we prove that a probability distribution on C is a quasi-stationary distribution if and only if it is a µ-invariant measure for the transition function, P. We shall also show that if m is a quasi-stationary distribution for P, then a necessary and sufficient condition for m to be µ-invariant for Q is that P satisfies the Kolmogorov forward equations over C. When the remaining forward equations hold, the quasi-stationary distribution must satisfy a set of ‘residual equations' involving the transition rates into the absorbing state. The residual equations allow us to determine the value of µ for which the quasi-stationary distribution is µ-invariant for P. We also prove some more general results giving bounds on the values of µ for which a convergent measure can be a µ-subinvariant and then µ-invariant measure for P. The remainder of the paper is devoted to the question of when a convergent µ-subinvariant measure, m, for Q is a quasi-stationary distribution. Section 4 establishes a necessary and sufficient condition for m to be a quasi-stationary distribution for the minimal chain. In Section 5 we consider ‘single-exit' chains. We derive a necessary and sufficient condition for there to exist a process for which m is a quasi-stationary distribution. Under this condition all such processes can be specified explicitly through their resolvents. The results proved here allow us to conclude that the bounds for µ obtained in Section 3 are, in fact, tight. Finally, in Section 6, we illustrate our results by way of two examples: regular birth-death processes and a pure-birth process with absorption.


Author(s):  
T. Kaczorek

Positive fractional continuous-time linear systems with singular pencils A method for checking the positivity and finding the solution to the positive fractional descriptor continuous-time linear systems with singular pencils is proposed. The method is based on elementary row and column operations of the fractional descriptor systems to equivalent standard systems with some algebraic constraints on state variables and inputs. Necessary and sufficient conditions for the positivity of the fractional descriptor systems are established.


2011 ◽  
Vol 21 (3) ◽  
pp. 287-298 ◽  
Author(s):  
Tadeusz Kaczorek

Checking of the positivity of descriptor linear systems by the use of the shuffle algorithmNecessary and sufficient conditions for the positivity of descriptor continuous-time and discrete-time linear systems are established. The shuffle algorithm is applied to transform the state equations of the descriptor systems to their equivalent form for which necessary and sufficient conditions for their positivity have been derived. A procedure for checking the positivity of the descriptor systems is proposed and illustrated by numerical examples.


Sign in / Sign up

Export Citation Format

Share Document