Systemic Induction of Terpenoid Aldehydes in Cotton Pigment Glands by Feeding of Larval Spodoptera exigua

1997 ◽  
Vol 23 (12) ◽  
pp. 2861-2879 ◽  
Author(s):  
Heather J. McAuslane ◽  
Hans T. Alborn ◽  
John P. Toth
2014 ◽  
Vol 4 (3) ◽  
pp. 188-195
Author(s):  
Lorraine Puckhaber ◽  
James Frelichowski ◽  
Alois Bell ◽  
Robert Stipanovic
Keyword(s):  

Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1233
Author(s):  
Adriana Ricarte-Bermejo ◽  
Oihane Simón ◽  
Ana Beatriz Fernández ◽  
Trevor Williams ◽  
Primitivo Caballero

Enhancins are metalloproteinases that facilitate baculovirus infection in the insect midgut. They are more prevalent in granuloviruses (GVs), constituting up to 5% of the proteins of viral occlusion bodies (OBs). In nucleopolyhedroviruses (NPVs), in contrast, they are present in the envelope of the occlusion-derived virions (ODV). In the present study, we constructed a recombinant Autographa californica NPV (AcMNPV) that expressed the Trichoplusia ni GV (TnGV) enhancin 3 (En3), with the aim of increasing the presence of enhancin in the OBs or ODVs. En3 was successfully produced but did not localize to the OBs or the ODVs and accumulated in the soluble fraction of infected cells. As a result, increased OB pathogenicity was observed when OBs were administered in mixtures with the soluble fraction of infected cells. The mixture of OBs and the soluble fraction of Sf9 cells infected with BacPhEn3 recombinant virus was ~3- and ~4.7-fold more pathogenic than BacPh control OBs in the second and fourth instars of Spodoptera exigua, respectively. In contrast, when purified, recombinant BacPhEn3 OBs were as pathogenic as control BacPh OBs. The expression of En3 in the soluble fraction of insect cells may find applications in the development of virus-based insecticides with increased efficacy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Luuk van Hooren ◽  
Alessandra Vaccaro ◽  
Mohanraj Ramachandran ◽  
Konstantinos Vazaios ◽  
Sylwia Libard ◽  
...  

AbstractGliomas are brain tumors characterized by an immunosuppressive microenvironment. Immunostimulatory agonistic CD40 antibodies (αCD40) are in clinical development for solid tumors, but are yet to be evaluated for glioma. Here, we demonstrate that systemic delivery of αCD40 in preclinical glioma models induces the formation of tertiary lymphoid structures (TLS) in proximity of meningeal tissue. In treatment-naïve glioma patients, the presence of TLS correlates with increased T cell infiltration. However, systemic delivery of αCD40 induces hypofunctional T cells and impairs the response to immune checkpoint inhibitors in pre-clinical glioma models. This is associated with a systemic induction of suppressive CD11b+ B cells post-αCD40 treatment, which accumulate in the tumor microenvironment. Our work unveils the pleiotropic effects of αCD40 therapy in glioma and reveals that immunotherapies can modulate TLS formation in the brain, opening up for future opportunities to regulate the immune response.


Sign in / Sign up

Export Citation Format

Share Document