Large-Eddy Simulations of the Baroclinic Mixed Layer

2004 ◽  
Vol 112 (1) ◽  
pp. 57-80 ◽  
Author(s):  
Zbigniew Sorbjan
2005 ◽  
Vol 35 (4) ◽  
pp. 444-457 ◽  
Author(s):  
Jeff A. Polton ◽  
David M. Lewis ◽  
Stephen E. Belcher

Abstract The interaction between the Coriolis force and the Stokes drift associated with ocean surface waves leads to a vertical transport of momentum, which can be expressed as a force on the mean momentum equation in the direction along wave crests. How this Coriolis–Stokes forcing affects the mean current profile in a wind-driven mixed layer is investigated using simple models, results from large-eddy simulations, and observational data. The effects of the Coriolis–Stokes forcing on the mean current profile are examined by reappraising analytical solutions to the Ekman model that include the Coriolis–Stokes forcing. Turbulent momentum transfer is modeled using an eddy-viscosity model, first with a constant viscosity and second with a linearly varying eddy viscosity. Although the Coriolis–Stokes forcing penetrates only a small fraction of the depth of the wind-driven layer for parameter values typical of the ocean, the analytical solutions show how the current profile is substantially changed through the whole depth of the wind-driven layer. It is shown how, for this oceanic regime, the Coriolis–Stokes forcing supports a fraction of the applied wind stress, changing the boundary condition on the wind-driven component of the flow and hence changing the current profile through all depths. The analytical solution with the linearly varying eddy viscosity is shown to reproduce reasonably well the effects of the Coriolis–Stokes forcing on the current profile computed from large-eddy simulations, which resolve the three-dimensional overturning motions associated with the turbulent Langmuir circulations in the wind-driven layer. Last, the analytical solution with the Coriolis–Stokes forcing is shown to agree reasonably well with current profiles from previously published observational data and certainly agrees better than the standard Ekman model. This finding provides evidence that the Coriolis–Stokes forcing is an important mechanism in controlling the dynamics of the upper ocean.


2018 ◽  
Vol 48 (6) ◽  
pp. 1233-1241 ◽  
Author(s):  
John R. Taylor

AbstractThe influence of submesoscale currents on the distribution and subduction of passive, buoyant tracers in the mixed layer is examined using large-eddy simulations. Submesoscale eddies are generated through an ageostrophic baroclinic instability associated with a background horizontal buoyancy gradient. The simulations also include various levels of surface cooling, which provides an additional source of three-dimensional turbulence. Submesoscales compete against turbulent convection and restratify the mixed layer while generating strong turbulence along a submesoscale front. Buoyant tracers accumulate at the surface along the submesoscale front where they are subducted down into the water column. The presence of submesoscales strongly modifies the vertical tracer flux, even in the presence of strong convective forcing. The correlation between high tracer concentration and strong downwelling enhances the vertical diffusivity for buoyant tracers.


2020 ◽  
Vol 50 (5) ◽  
pp. 1319-1339
Author(s):  
John R. Taylor ◽  
Katherine M. Smith ◽  
Catherine A. Vreugdenhil

AbstractWe use idealized large-eddy simulations (LES) and a simple analytical theory to study the influence of submesoscales on the concentration and export of sinking particles from the mixed layer. We find that restratification of the mixed layer following the development of submesoscales reduces the rate of vertical mixing which, in turn, enhances the export rate associated with gravitational settling. For a neutral tracer initially confined to the mixed layer, subinertial (submesoscale) motions enhance the downward tracer flux, consistent with previous studies. However, the sign of the advective flux associated with the concentration of sinking particles reverses, indicating reentrainment into the mixed layer. A new theory is developed to model the gravitational settling flux when the particle concentration is nonuniform. The theory broadly agrees with the LES results and allows us to extend the analysis to a wider range of parameters.


2011 ◽  
Vol 39 (3-4) ◽  
pp. 311-331 ◽  
Author(s):  
Tamay M. Özgökmen ◽  
Andrew C. Poje ◽  
Paul F. Fischer ◽  
Angelique C. Haza

2014 ◽  
Vol 71 (3) ◽  
pp. 881-895 ◽  
Author(s):  
Bart J. H. van Stratum ◽  
Jordi Vilá-Guerau de Arellano ◽  
Chiel C. van Heerwaarden ◽  
Huug G. Ouwersloot

Abstract The processes and feedbacks associated with the mass flux of shallow cumulus clouds over land are studied by analyzing the results from large-eddy simulations and a mixed-layer model. The primary focus is to study the development of the (well mixed) subcloud layer and understand the four primary feedbacks between the subcloud-layer dynamics and cumulus mass flux. Guided by numerical experiments in large-eddy simulations that show the transition from clear to cloudy boundary layers at midlatitudes over land, the feedbacks introduced by shallow cumuli are first conceptually described. To study the complex interplay between the subcloud and cloud layer, a mixed-layer model is proposed and validated with large-eddy simulations for the Atmospheric Radiation Measurement Southern Great Plains case. The mixed-layer model is shown to identify and reproduce the most relevant feedbacks in the transition from clear to cloudy boundary layers: a reduced mixed-layer growth and drying of the subcloud layer by enhanced entrainment and mass flux transport of moisture to the cloud layer. To complete the study, the strength of the different feedbacks is further quantified by an analysis of the individual contributions to the tendency of the relative humidity at the top of the mixed layer.


2019 ◽  
Vol 57 (4) ◽  
pp. 1338-1371 ◽  
Author(s):  
Marcelo Chamecki ◽  
Tomas Chor ◽  
Di Yang ◽  
Charles Meneveau

2006 ◽  
Vol 45 (1) ◽  
pp. 87-107 ◽  
Author(s):  
Andreas P. Weigel ◽  
Fotini K. Chow ◽  
Mathias W. Rotach ◽  
Robert L. Street ◽  
Ming Xue

Abstract This paper analyzes the three-dimensional flow structure and the heat budget in a typical medium-sized and steep Alpine valley—the Riviera Valley in southern Switzerland. Aircraft measurements from the Mesoscale Alpine Programme (MAP)-Riviera field campaign reveal a very pronounced valley-wind system, including a strong curvature-induced secondary circulation in the southern valley entrance region. Accompanying radio soundings show that the growth of a well-mixed layer is suppressed, even under convective conditions. Our analyses are based on the MAP-Riviera measurement data and the output of high-resolution large-eddy simulations using the Advanced Regional Prediction System (ARPS). Three sunny days of the measurement campaign are simulated. Using horizontal grid spacings of 350 and 150 m (with a vertical spacing as fine as 20 m), the model reproduces the observed flow features very well. The ARPS output data are then used to calculate the components of the heat budget of the valley atmosphere, first in profiles over the valley base and then as averages over almost the entire valley volume. The analysis shows that the suppressed growth of the well-mixed layer is due to the combined effect of cold-air advection in the along-valley direction and subsidence of warm air from the free atmosphere aloft. It is further influenced by the local cross-valley circulation. This had already been hypothesized on the basis of measurement data and is now confirmed through a numerical model. Averaged over the entire valley, subsidence turns out to be one of the main heating sources of the valley atmosphere and is of comparable magnitude to turbulent heat flux divergence. On the mornings of two out of the three simulation days, this subsidence is even identified as the only major heating source and thus appears to be an important driving mechanism for the onset of thermally driven upvalley winds.


Sign in / Sign up

Export Citation Format

Share Document