Large eddy simulations of endwall heat transfer around junction of a symmetric vane

Author(s):  
Yutaka Oda ◽  
Kenichiro Takeishi ◽  
S. Hada ◽  
Y. Nuta
Author(s):  
Cody Dowd ◽  
Danesh Tafti

The focus of this research is to predict the flow and heat transfer in a rotating two-pass duct geometry with staggered ribs using Large-Eddy Simulations (LES). The geometry consists of a U-Bend with 17 ribs in each pass. The ribs are staggered with an e/Dh = 0.1 and P/e = 10. LES is performed at a Reynolds number of 100,000, a rotation number of 0.2 and buoyancy parameters (Bo) of 0.5 and 1.0. The effects of Coriolis forces and centrifugal buoyancy are isolated and studied individually. In all cases it is found that increasing Bo from 0.5 to 1.0 at Ro = 0.2 has little impact on heat transfer. It is found that in the first pass, the heat transfer is quite receptive to Coriolis forces which augment and attenuate heat transfer at the trailing and leading walls, respectively. Centrifugal buoyancy, on the other hand has a bigger effect in augmenting heat transfer at the trailing wall than in attenuating heat transfer at the leading wall. On contrary, it aids heat transfer in the second half of the first pass at the leading wall by energizing the flow near the wall. The heat transfer in the second pass is dominated by the highly turbulent flow exiting the bend. Coriolis forces have no impact on the augmentation of heat transfer on the leading wall till the second half of the passage whereas it attenuates heat transfer at the trailing wall as soon as the flow exits the bend. Contrary to phenomenological arguments, inclusion of centrifugal buoyancy augments heat transfer over Coriolis forces alone on both the leading and trailing walls of the second pass.


Author(s):  
Soizic Esnault ◽  
Florent Duchaine ◽  
Laurent Gicquel

Abstract Synthetic jets are produced by devices that enable a suction phase followed by an ejection phase. The resulting mean mass budget is hence null and no addition of mass in the system is required. These particular jets have especially been considered for some years for flow control applications. They also display features that can become of interest to enhance heat exchanges, for example for wall cooling issues. Synthetic jets can be generated through different mechanisms, such as acoustics by making use of a Helmholtz resonator or through the motion of a piston as in an experience mounted at Institut Pprime in France. The objective of this specific experiment is to understand how synthetic jets can enhance heat transfer in a multi-perforated configuration. As a complement to this experimental set up, Large-Eddy Simulations are produced and analysed in the present document to investigate the flow behavior as well as the impact of the synthetic jets on wall heat transfer. The experimental system considered here consists in a perforated heated plate, each perforation being above a cavity where a piston is used to control the synthetic jets. Placed in a wind tunnel test section, the device can be studied with a grazing flow and multiple operating points are available. The one considered here implies a grazing flow velocity of 12.8 m.s−1, corresponding to a Mach number around 0.04, and a piston displacement of 22 mm peak-to-peak at a frequency of 12.8 Hz. These two latter parameters lead to a jet Reynolds number of about 830. A good agreement is found between numerical results and experimental data. The simulations are then used to provide a detailed understanding of the flow. Two main behaviours are found, depending on the considered mid-period. During the ejection phase, the flow transitions to turbulence and the formation of characteristic structures is observed; the plate is efficiently cooled. During the suction phase the main flow is stabilised; the heat enhancement is particularly efficient in the hole wakes but not between them, leading to a heterogeneous temperature field.


Author(s):  
Angela Wu ◽  
Seunghwan Keum ◽  
Volker Sick

In this study, the effects of the thermal boundary conditions at the engine walls on the predictions of Large-Eddy Simulations (LES) of a motored Internal Combustion Engine (ICE) were examined. Two thermal boundary condition cases were simulated. One case used a fixed, uniform wall temperature, which is typically used in conventional LES modeling of ICEs. The second case utilized a Conjugate Heat Transfer (CHT) modeling approach to obtain temporally and spatially varying wall temperature. The CHT approach solves the coupled heat transfer problem between fluid and solid domains. The CHT case included the solid valves, piston, cylinder head, cylinder liner, valve seats, and spark plug geometries. The simulations were validated with measured bulk flow, near-wall flow, surface temperature, and surface heat flux. The LES quality of both simulations was also discussed. The CHT results show substantial spatial, temporal, and cyclic variability of the wall heat transfer. The surface temperature dynamics obtained from the CHT model compared well with measurements during the compression stroke, but the absolute magnitude was 5 K (or 1.4%) off and the prediction of the drop in temperature after top dead center suffered from temporal resolution limitations. Differences in the predicted flow and temperature fields between the uniform surface temperature and CHT simulations show the impact of the surface temperature on bulk behavior.


2005 ◽  
Vol 127 (5) ◽  
pp. 486-498 ◽  
Author(s):  
Mayank Tyagi ◽  
Sumanta Acharya

Large eddy simulations are performed in a periodic domain of a rotating square duct with normal rib turbulators. Both the Coriolis force as well as the centrifugal buoyancy forces are included in this study. A direct approach is presented for the unsteady calculation of the nondimensional temperature field in the periodic domain. The calculations are performed at a Reynolds number (Re) of 12,500, a rotation number (Ro) of 0.12, and an inlet coolant-to-wall density ratio Δρ/ρ of 0.13. The predicted time and space-averaged Nusselt numbers are shown to compare satisfactorily with the published experimental data. Time sequences of the vorticity components and the temperature fields are presented to understand the flow physics and the unsteady heat transfer behavior. Large scale coherent structures are seen to play an important role in the mixing and heat transfer. The temperature field appears to contain a low frequency mode that extends beyond a single inter-rib geometric module, and indicates the necessity of using at least two inter-rib modules for streamwise periodicity to be satisfied. Proper orthogonal decomposition (POD) of the flowfield indicates a low dimensionality of this system with almost 99% of turbulent energy in the first 80 POD modes.


Sign in / Sign up

Export Citation Format

Share Document