submesoscale currents
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 2)

Abstract The interaction between upper-ocean submesoscale fronts evolving with coherent features, such as vortex filaments and eddies, and finescale convective turbulence generated by surface cooling of varying magnitude is investigated. While convection is energized by gravitational instability, predominantly at the finescale (FS), which feeds off the potential energy that is input through cooling, the submesoscale (SMS) is energized at larger scales by the release of available potential energy stored in the front. Here, we decompose the flow into FS and SMS fields explicitly to investigate the energy pathways and the strong interaction between them. Overall, the SMS is energized due to surface cooling. The frontogenetic tendency at the submesoscale increases, which counters the enhanced horizontal diffusion by convection-induced turbulence. Downwelling/upwelling strengthens, and the peak SMS vertical buoyancy flux increases as surface cooling is increased. Furthermore, the production of FS energy by SMS velocity gradients is significant, up to half of the production by convection. Examination of potential vorticity reveals that surface cooling promotes higher levels of secondary symmetric instability, which coexists with the persistent baroclinic instability.


2021 ◽  
Vol 51 (1) ◽  
pp. 187-206
Author(s):  
Zhiwei Zhang ◽  
Xincheng Zhang ◽  
Bo Qiu ◽  
Wei Zhao ◽  
Chun Zhou ◽  
...  

AbstractAlthough observational efforts have been made to detect submesoscale currents (submesoscales) in regions with deep mixed layers and/or strong mesoscale kinetic energy (KE), there have been no long-term submesoscale observations in subtropical gyres, which are characterized by moderate values of both mixed layer depths and mesoscale KE. To explore submesoscale dynamics in this oceanic regime, two nested mesoscale- and submesoscale-resolving mooring arrays were deployed in the northwestern Pacific subtropical countercurrent region during 2017–19. Based on the 2 years of data, submesoscales featuring order one Rossby numbers, large vertical velocities (with magnitude of 10–50 m day−1) and vertical heat flux, and strong ageostrophic KE are revealed in the upper 150 m. Although most of the submesoscales are surface intensified, they are found to penetrate far beneath the mixed layer. They are most energetic during strong mesoscale strain periods in the winter–spring season but are generally weak in the summer–autumn season. Energetics analysis suggests that the submesoscales receive KE from potential energy release but lose a portion of it through inverse cascade. Because this KE sink is smaller than the source term, a forward cascade must occur to balance the submesoscale KE budget, for which symmetric instability may be a candidate mechanism. By synthesizing observations and theories, we argue that the submesoscales are generated through a combination of baroclinic instability in the upper mixed and transitional layers and mesoscale strain-induced frontogenesis, among which the former should play a more dominant role in their final generation stage.


2020 ◽  
Vol 34 (10) ◽  
Author(s):  
Fayçal Kessouri ◽  
Daniele Bianchi ◽  
Lionel Renault ◽  
James C. McWilliams ◽  
Hartmut Frenzel ◽  
...  

2019 ◽  
Vol 879 ◽  
pp. 512-553 ◽  
Author(s):  
Peter P. Sullivan ◽  
James C. McWilliams

Submesoscale currents, small-scale turbulence and surface gravity waves co-exist in the upper ocean and interact in complex ways. To expose the couplings, the frontogenetic life cycle of an idealized cold dense submesoscale filament interacting with upper ocean Langmuir turbulence is investigated in large-eddy simulations (LESs) based on the incompressible wave-averaged equations. The simulations utilize large domains and fine meshes with $6.4\times 10^{9}$ grid points. Case studies are made with surface winds or surface cooling with waves oriented in across-filament (perpendicular) or down-filament (parallel) directions relative to the two-dimensional filament axis. The currents $u$, $v$ and $w$ are aligned with the across-filament, down-filament and vertical directions, respectively. Frontogenesis is induced by across-filament Lagrangian secondary circulations in the boundary layer, and it is shown to be strongly impacted by surface waves, in particular the propagation direction relative to the filament axis. In a horizontally heterogeneous boundary layer, surface waves induce both mean and fluctuating Stokes-drift vortex forces that modify a linear, hydrostatic turbulent thermal wind (TTW) approximation for momentum. Down-filament winds and waves are found to be especially impactful, they significantly reduce the peak level of frontogenesis by fragmenting the filament into primary and secondary down-welling sites in a broad frontal zone over a width ${\sim}500~\text{m}$. At peak frontogenesis, opposing down-filament jets $\langle v\rangle$ overlie each other resulting in a vigorous vertical shear layer $\unicode[STIX]{x2202}_{z}\langle v\rangle$ with large vertical momentum flux $\langle v^{\prime }w^{\prime }\rangle$. Filament arrest is induced by a lateral shear instability that generates horizontal momentum flux $\langle u^{\prime }v^{\prime }\rangle$ at low wavenumbers. The turbulent vertical velocity patterns, indicative of coherent Langmuir cells, change markedly across the horizontal domain with both across-filament and down-filament winds under the action of submesoscale currents.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
James C. McWilliams

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Marina Lévy ◽  
Peter J. S. Franks ◽  
K. Shafer Smith

Sign in / Sign up

Export Citation Format

Share Document