On the Inversion Formula of the Fourier Transform of the Characteristic Function of Several Variables

2004 ◽  
Vol 120 (2) ◽  
pp. 1191-1194 ◽  
Author(s):  
A. N. Podkorytov ◽  
Mai Van Minh
2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Tariq O. Salim ◽  
Atta A. K. Abu Hany ◽  
Mohammed S. El-Khatib

The aim of this article is to introduce a new definition for the Fourier transform. This new definition will be considered as one of the generalizations of the usual (classical) Fourier transform. We employ the new Katugampola derivative to obtain some properties of the Katugampola Fourier transform and find the relation between the Katugampola Fourier transform and the usual Fourier transform. The inversion formula and the convolution theorem for the Katugampola Fourier transform are considered.


1996 ◽  
Vol 16 (2) ◽  
pp. 207-253 ◽  
Author(s):  
Mustafa Akcoglu ◽  
Alexandra Bellow ◽  
Roger L. Jones ◽  
Viktor Losert ◽  
Karin Reinhold-Larsson ◽  
...  

AbstractIn this paper we establish conditions on a sequence of operators which imply divergence. In fact, we give conditions which imply that we can find a set B of measure as close to zero as we like, but such that the operators applied to the characteristic function of this set have a lim sup equal to 1 and a lim inf equal to 0 a.e. (strong sweeping out). The results include the fact that ergodic averages along lacunary sequences, certain convolution powers, and the Riemann sums considered by Rudin are all strong sweeping out. One of the criteria for strong sweeping out involves a condition on the Fourier transform of the sequence of measures, which is often easily checked. The second criterion for strong sweeping out involves showing that a sequence of numbers satisfies a property similar to the conclusion of Kronecker's lemma on sequences linearly independent over the rationals.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Charlotte Sleight ◽  
Massimo Taronna

Abstract We describe in more detail the general relation uncovered in our previous work between boundary correlators in de Sitter (dS) and in Euclidean anti-de Sitter (EAdS) space, at any order in perturbation theory. Assuming the Bunch-Davies vacuum at early times, any given diagram contributing to a boundary correlator in dS can be expressed as a linear combination of Witten diagrams for the corresponding process in EAdS, where the relative coefficients are fixed by consistent on-shell factorisation in dS. These coefficients are given by certain sinusoidal factors which account for the change in coefficient of the contact sub-diagrams from EAdS to dS, which we argue encode (perturbative) unitary time evolution in dS. dS boundary correlators with Bunch-Davies initial conditions thus perturbatively have the same singularity structure as their Euclidean AdS counterparts and the identities between them allow to directly import the wealth of techniques, results and understanding from AdS to dS. This includes the Conformal Partial Wave expansion and, by going from single-valued Witten diagrams in EAdS to Lorentzian AdS, the Froissart-Gribov inversion formula. We give a few (among the many possible) applications both at tree and loop level. Such identities between boundary correlators in dS and EAdS are made manifest by the Mellin-Barnes representation of boundary correlators, which we point out is a useful tool in its own right as the analogue of the Fourier transform for the dilatation group. The Mellin-Barnes representation in particular makes manifest factorisation and dispersion formulas for bulk-to-bulk propagators in (EA)dS, which imply Cutkosky cutting rules and dispersion formulas for boundary correlators in (EA)dS. Our results are completely general and in particular apply to any interaction of (integer) spinning fields.


1985 ◽  
Vol 31 (2) ◽  
pp. 171-179
Author(s):  
Hwai-chiuan Wang

In this article we give a new proof of the theorem that a positive even convex function on the real line, which vanishes at infinity, is the Fourier transform of an integrable function. Related results in several variables are also proved. As an application of our results we solve the factorization problem of Sobolev algebras.


Author(s):  
Charles Fefferman ◽  
Alexandru D. Ionescu ◽  
D.H. Phong ◽  
Stephen Wainger

Princeton University's Elias Stein was the first mathematician to see the profound interconnections that tie classical Fourier analysis to several complex variables and representation theory. His fundamental contributions include the Kunze–Stein phenomenon, the construction of new representations, the Stein interpolation theorem, the idea of a restriction theorem for the Fourier transform, and the theory of Hp Spaces in several variables. Through his great discoveries, through books that have set the highest standard for mathematical exposition, and through his influence on his many collaborators and students, Stein has changed mathematics. Drawing inspiration from Stein's contributions to harmonic analysis and related topics, this book gathers papers from internationally renowned mathematicians, many of whom have been Stein's students. The book also includes expository papers on Stein's work and its influence.


Sign in / Sign up

Export Citation Format

Share Document