Expression of muscle creatine kinase gene of mice and interaction of nuclear proteins with MEF-2, E boxes and A/T-rich elements during aging

2004 ◽  
Vol 31 (1) ◽  
pp. 43-50 ◽  
Author(s):  
K. Shanti ◽  
M.S. Kanungo
2003 ◽  
Vol 278 (47) ◽  
pp. 46494-46505 ◽  
Author(s):  
Quynh-Giao V. Nguyen ◽  
Jean N. Buskin ◽  
Charis L. Himeda ◽  
Margaret A. Shield ◽  
Stephen D. Hauschka

1988 ◽  
Vol 8 (1) ◽  
pp. 62-70
Author(s):  
J B Jaynes ◽  
J E Johnson ◽  
J N Buskin ◽  
C L Gartside ◽  
S D Hauschka

Muscle creatine kinase (MCK) is induced to high levels during skeletal muscle differentiation. We have examined the upstream regulatory elements of the mouse MCK gene which specify its activation during myogenesis in culture. Fusion genes containing up to 3,300 nucleotides (nt) of MCK 5' flanking DNA in various positions and orientations relative to the bacterial chloramphenicol acetyltransferase (CAT) structural gene were transfected into cultured cells. Transient expression of CAT was compared between proliferating and differentiated MM14 mouse myoblasts and with nonmyogenic mouse L cells. The major effector of high-level expression was found to have the properties of a transcriptional enhancer. This element, located between 1,050 and 1,256 nt upstream of the transcription start site, was also found to have a major influence on the tissue and differentiation specificity of MCK expression; it activated either the MCK promoter or heterologous promoters only in differentiated muscle cells. Comparisons of viral and cellular enhancer sequences with the MCK enhancer revealed some similarities to essential regions of the simian virus 40 enhancer as well as to a region of the immunoglobulin heavy-chain enhancer, which has been implicated in tissue-specific protein binding. Even in the absence of the enhancer, low-level expression from a 776-nt MCK promoter retained differentiation specificity. In addition to positive regulatory elements, our data provide some evidence for negative regulatory elements with activity in myoblasts. These may contribute to the cell type and differentiation specificity of MCK expression.


1989 ◽  
Vol 9 (2) ◽  
pp. 594-601
Author(s):  
E A Sternberg ◽  
G Spizz ◽  
M E Perry ◽  
E N Olson

Differentiation of skeletal myoblasts is accompanied by induction of a series of tissue-specific genes whose products are required for the specialized functions of the mature muscle fiber. The program for myogenic differentiation is subject to negative control by several peptide growth factors and by the products of mutationally activated ras oncogenes, which persistently activate intracellular cascades normally triggered by specific growth factors. Previously, we reported that induction of the muscle creatine kinase (mck) gene during myogenesis was dependent on a distal upstream enhancer that cooperated with a proximal promoter to direct high levels of expression in developing muscle cells (E. A. Sternberg, G. Spizz, W. M. Perry, D. Vizard, T. Weil, and E. N. Olson, Mol. Cell. Biol. 8:2896-2909). To investigate the mechanisms whereby ras blocks the induction of muscle-specific genes, we have examined the ability of mck 5' regulatory elements to direct expression of the linked reporter gene for chloramphenicol acetyltransferase (cat) in C2 myoblasts bearing mutant N-ras and H-ras oncogenes. In this paper we report that expression of activated ras alleles abolishes activity of the mck upstream enhancer but does not affect the activity of the mck promoter. The ability of ras to repress the expression of mck-cat fusion genes that have been transfected either transiently or stably into myoblasts suggests that ras may exert its effects on muscle-specific genes through mechanisms independent of chromatin configurations or DNA methylation. These results also suggest that ras blocks establishment of the myogenic phenotype by preventing the accumulation of regulatory factors required for transcriptional induction of muscle-specific genes.


1996 ◽  
Vol 16 (9) ◽  
pp. 5058-5068 ◽  
Author(s):  
M A Shield ◽  
H S Haugen ◽  
C H Clegg ◽  
S D Hauschka

Previous analysis of the muscle creatine kinase (MCK) gene indicated that control elements required for transcription in adult mouse muscle differed from those required in cell culture, suggesting that distinct modes of muscle gene regulation occur in vivo. To examine this further, we measured the activity of MCK transgenes containing E-box and promoter deletions in a variety of striated muscles. Simultaneous mutation of three E boxes in the 1,256-bp MCK 5' region, which abolished transcription in muscle cultures, had strikingly different effects in mice. The mutations abolished transgene expression in cardiac and tongue muscle and caused a reduction in expression in the soleus muscle (a muscle with many slow fibers) but did not affect expression in predominantly fast muscles: quadriceps, abdominals, and extensor digitorum longus. Other regulatory sequences with muscle-type-specific activities were found within the 358-bp 5'-flanking region. This proximal region conferred relatively strong expression in limb and abdominal skeletal muscles but was inactive in cardiac and tongue muscles. However, when the 206-bp 5' enhancer was ligated to the 358-bp region, high levels of tissue-specific expression were restored in all muscle types. These results indicate that E boxes and a proximal regulatory region are differentially required for maximal MCK transgene expression in different striated muscles. The overall results also imply that within skeletal muscles, the steady-state expression of the MCK gene and possibly other muscle genes depends on transcriptional mechanisms that differ between fast and slow fibers as well as between the anatomical and physiological attributes of each specific muscle.


2009 ◽  
Vol 41 ◽  
pp. 164
Author(s):  
Yuval Heled ◽  
Patricia A. Deuster ◽  
Sheila Muldoon ◽  
Carmen Sesvold-Contreras ◽  
Kimbra Kenny ◽  
...  

1989 ◽  
Vol 9 (6) ◽  
pp. 2396-2413
Author(s):  
R A Horlick ◽  
P A Benfield

A series of constructs that links the rat muscle creatine kinase promoter to the bacterial chloramphenicol acetyltransferase gene was generated. These constructs were introduced into differentiating mouse C2C12 myogenic cells to localize sequences that are important for up-regulation of the creatine kinase gene during myogenic differentiation. A muscle-specific enhancer element responsible for induction of chloramphenicol acetyltransferase expression during myogenesis was localized to a 159-base-pair region from 1,031 to 1,190 base pairs upstream of the transcription start site. Analysis of transient expression experiments using promoters mutated by deletion indicated the presence of multiple functional domains within this muscle-specific regulatory element. A DNA fragment spanning this region was used in DNase I protection experiments. Nuclear extracts derived from C2 myotubes protected three regions (designated E1, E2, and E3) on this fragment from digestion, which indicated there may be three or more trans-acting factors that interact with the creatine kinase muscle enhancer. Gel retardation assays revealed that factors able to bind specifically to E1, E2, and E3 are present in a wide variety of tissues and cell types. Transient expression assays demonstrated that elements in regions E1 and E3, but not necessarily E2, are required for full enhancer activity.


Sign in / Sign up

Export Citation Format

Share Document