Integration of Special Linear Equations of the Second Order

2003 ◽  
Vol 6 (2) ◽  
pp. 277-286 ◽  
Author(s):  
A. V. Chichurin
2020 ◽  
Vol 80 (7) ◽  
Author(s):  
David Pérez Carlos ◽  
Augusto Espinoza ◽  
Andrew Chubykalo

Abstract The purpose of this paper is to get second-order gravitational equations, a correction made to Jefimenko’s linear gravitational equations. These linear equations were first proposed by Oliver Heaviside in [1], making an analogy between the laws of electromagnetism and gravitation. To achieve our goal, we will use perturbation methods on Einstein field equations. It should be emphasized that the resulting system of equations can also be derived from Logunov’s non-linear gravitational equations, but with different physical interpretation, for while in the former gravitation is considered as a deformation of space-time as we can see in [2–5], in the latter gravitation is considered as a physical tensor field in the Minkowski space-time (as in [6–8]). In Jefimenko’s theory of gravitation, exposed in [9, 10], there are two kinds of gravitational fields, the ordinary gravitational field, due to the presence of masses, at rest, or in motion and other field called Heaviside field due to and acts only on moving masses. The Heaviside field is known in general relativity as Lense-Thirring effect or gravitomagnetism (The Heaviside field is the gravitational analogous of the magnetic field in the electromagnetic theory, its existence was proved employing the Gravity Probe B launched by NASA (See, for example, [11, 12]). It is a type of gravitational induction), interpreted as a distortion of space-time due to the motion of mass distributions, (see, for example [13, 14]). Here, we will present our second-order Jefimenko equations for gravitation and its solutions.


The differential equations arising in most branches of applied mathematics are linear equations of the second order. Internal ballistics, which is the dynamics of the motion of the shot in a gun, requires, except with the simplest assumptions, the discussion of non-linear differential equations of the first and second orders. The writer has shown in a previous paper* how such non-linear equations arise when the pressure-index a in the rate-of-burning equation differs from unity, although only the simplified case of non-resisted motion was there considered. It is proposed in the present investigation to examine some cases of resisted motion taking the pressure-index equal to unity, to give some extensions of the previous work, and to consider, so far as is possible, the nature and the solution of the types of differential equations which arise.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Minqiang Xu ◽  
Jing Niu ◽  
Li Guo

This paper is concerned with a high-order numerical scheme for nonlinear systems of second-order boundary value problems (BVPs). First, by utilizing quasi-Newton’s method (QNM), the nonlinear system can be transformed into linear ones. Based on the standard Lobatto orthogonal polynomials, we introduce a high-order Lobatto reproducing kernel method (LRKM) to solve these linear equations. Numerical experiments are performed to investigate the reliability and efficiency of the presented method.


Sign in / Sign up

Export Citation Format

Share Document