scholarly journals Duality in Quantum Information Geometry

2004 ◽  
Vol 11 (01) ◽  
pp. 71-77 ◽  
Author(s):  
R. F. Streater

Let [Formula: see text] be a separable Hilbert space. We consider the manifold [Formula: see text] consisting of density operators ρ on [Formula: see text] such that ρp is of trace class for some p ɛ (0, 1). We say [Formula: see text] is nearby ρ if there exists C > 1 such that C−1 ρ < σ < Cρ. We show that the space of nearby points to ρ can be furnished with the two flat connections known as the (±)-affine structures, which are dual relative to the BKM metric. We furnish [Formula: see text] with a norm making it into a Banach manifold.

2004 ◽  
Vol 11 (04) ◽  
pp. 359-375 ◽  
Author(s):  
R. F. Streater

Let H0 be a selfadjoint operator such that Tr e−βH0 is of trace class for some β < 1, and let χɛ denote the set of ɛ-bounded forms, i.e., ∥(H0+C)−1/2−ɛX(H0+C)−1/2+ɛ∥ < C for some C > 0. Let χ := Span ∪ɛ∈(0,1/2]χɛ. Let [Formula: see text] denote the underlying set of the quantum information manifold of states of the form ρx = e−H0−X−ψx, X ∈ χ. We show that if Tr e−H0 = 1. 1. the map Φ, [Formula: see text] is a quantum Young function defined on χ 2. The Orlicz space defined by Φ is the tangent space of [Formula: see text] at ρ0; its affine structure is defined by the (+1)-connection of Amari 3. The subset of a ‘hood of ρ0, consisting of p-nearby states (those [Formula: see text] obeying C−1ρ1+p ≤ σ ≤ Cρ1 − p for some C > 1) admits a flat affine connection known as the (−1) connection, and the span of this set is part of the cotangent space of [Formula: see text] 4. These dual structures extend to the completions in the Luxemburg norms.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Xiaochun Fang ◽  
Yihui Lao

Let H be a complex separable Hilbert space; we first characterize the unitary equivalence of two density operators by use of Tsallis entropy and then obtain the form of a surjective map on density operators preserving Tsallis entropy of convex combinations.


Author(s):  
Raffaella Carbone ◽  
Federico Girotti

AbstractWe introduce a notion of absorption operators in the context of quantum Markov processes. The absorption problem in invariant domains (enclosures) is treated for a quantum Markov evolution on a separable Hilbert space, both in discrete and continuous times: We define a well-behaving set of positive operators which can correspond to classical absorption probabilities, and we study their basic properties, in general, and with respect to accessibility structure of channels, transience and recurrence. In particular, we can prove that no accessibility is allowed between the null and positive recurrent subspaces. In the case, when the positive recurrent subspace is attractive, ergodic theory will allow us to get additional results, in particular about the description of fixed points.


2017 ◽  
Vol 11 (01) ◽  
pp. 1850004
Author(s):  
S. S. Dragomir

By the use of the celebrated Kato’s inequality, we obtain in this paper some new inequalities for trace class operators on a complex Hilbert space [Formula: see text] Natural applications for functions defined by power series of normal operators are given as well.


2019 ◽  
Vol 10 (4) ◽  
pp. 377-394
Author(s):  
Anirudha Poria ◽  
Jitendriya Swain

AbstractLet {\mathbb{H}} be a separable Hilbert space. In this paper, we establish a generalization of Walnut’s representation and Janssen’s representation of the {\mathbb{H}}-valued Gabor frame operator on {\mathbb{H}}-valued weighted amalgam spaces {W_{\mathbb{H}}(L^{p},L^{q}_{v})}, {1\leq p,q\leq\infty}. Also, we show that the frame operator is invertible on {W_{\mathbb{H}}(L^{p},L^{q}_{v})}, {1\leq p,q\leq\infty}, if the window function is in the Wiener amalgam space {W_{\mathbb{H}}(L^{\infty},L^{1}_{w})}. Further, we obtain the Walnut representation and invertibility of the frame operator corresponding to Gabor superframes and multi-window Gabor frames on {W_{\mathbb{H}}(L^{p},L^{q}_{v})}, {1\leq p,q\leq\infty}, as a special case by choosing the appropriate Hilbert space {\mathbb{H}}.


1982 ◽  
Vol 34 (6) ◽  
pp. 1245-1250 ◽  
Author(s):  
A. van Daele

Let M be a von Neumann algebra acting on a Hilbert space and assume that M has a separating and cyclic vector ω in . Then it can happen that M contains a proper von Neumann subalgebra N for which ω is still cyclic. Such an example was given by Kadison in [4]. He considered and acting on where is a separable Hilbert space. In fact by a result of Dixmier and Maréchal, M, M′ and N have a joint cyclic vector [3]. Also Bratteli and Haagerup constructed such an example ([2], example 4.2) to illustrate the necessity of one of the conditions in the main result of their paper. In fact this situation seems to occur rather often in quantum field theory (see [1] Section 24.2, [3] and [4]).


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Alfredas Račkauskas

Abstract We investigate the asymptotic normality of distributions of the sequence {\sum_{k\in\mathbb{Z}}u_{n,k}X_{k}} , {n\in\mathbb{N}} , where {(X_{k},k\in\mathbb{Z})} either is a sequence of i.i.d. random elements or constitutes a linear process with i.i.d. innovations in a separable Hilbert space. The weights {(u_{n,k})} are in general a family of linear bounded operators. This model includes operator weighted sums of Hilbert space valued linear processes, operator-wise discounted sums in a Hilbert space as well some extensions of classical summation methods.


1974 ◽  
Vol 26 (3) ◽  
pp. 565-575 ◽  
Author(s):  
W. E. Longstaff

A collection of subspaces of a Hilbert space is called a nest if it is totally ordered by inclusion. The set of all bounded linear operators leaving invariant each member of a given nest forms a weakly-closed algebra, called a nest algebra. Nest algebras were introduced by J. R. Ringrose in [9]. The present paper is concerned with generating nest algebras as weakly-closed algebras, and in particular with the following question which was first raised by H. Radjavi and P. Rosenthal in [8], viz: Is every nest algebra on a separable Hilbert space generated, as a weakly-closed algebra, by two operators? That the answer to this question is affirmative is proved by first reducing the problem using the main result of [8] and then by using a characterization of nests due to J. A. Erdos [2].


Sign in / Sign up

Export Citation Format

Share Document