scholarly journals Simulation of ozone and other chemical species using a Center for Climate System Research/National Institute for Environmental Studies atmospheric GCM with coupled stratospheric chemistry

1999 ◽  
Vol 104 (D11) ◽  
pp. 14003-14018 ◽  
Author(s):  
Masayuki Takigawa ◽  
Masaaki Takahashi ◽  
Hideharu Akiyoshi
2018 ◽  
Author(s):  
Adria K. Schwarber ◽  
Steven J. Smith ◽  
Corinne A. Hartin ◽  
Benjamin Aaron Vega-Westhoff ◽  
Ryan Sriver

Abstract. Simple climate models (SCMs) are numerical representations of the Earth’s gas cycles and climate system. SCMs are easy to use and computationally inexpensive, making them an ideal tool in both scientific and decision-making contexts (e.g., complex climate model emulation; parameter estimation experiments; climate metric calculations; and probabilistic analyses). Despite their prolific use, the fundamental responses of SCMs are often not directly characterized. In this study, we use unit tests of three chemical species (CO2, CH4, and BC) to understand the fundamental gas cycle and climate system responses of several SCMs (Hector v2.0, MAGICC 5.3, MAGICC 6.0, FAIR v1.0, and AR5-IR). We find that while idealized SCMs are widely used, they fail to capture important global mean climate response features, which can produce biased temperature results. Comprehensive SCMs, which have non-linear forcing and physically-based carbon cycle representations, show improved responses compared to idealized SCMs. Even some comprehensive SCMs fail to capture response timescales of more complex models under BC or CO2 forcing perturbations. These results suggest where improvements should be made to SCMs. Further, we provide a set of fundamental tests that we recommend as a standard validation suite for any SCM. Unit tests allow users to understand differences in model responses and the impact of model selection on results.


2019 ◽  
Vol 10 (4) ◽  
pp. 729-739 ◽  
Author(s):  
Adria K. Schwarber ◽  
Steven J. Smith ◽  
Corinne A. Hartin ◽  
Benjamin Aaron Vega-Westhoff ◽  
Ryan Sriver

Abstract. Simple climate models (SCMs) are numerical representations of the Earth's gas cycles and climate system. SCMs are easy to use and computationally inexpensive, making them an ideal tool in both scientific and decision-making contexts (e.g., complex climate model emulation, parameter estimation experiments, climate metric calculations, and probabilistic analyses). Despite their prolific use, the fundamental responses of SCMs are often not directly characterized. In this study, we use fundamental impulse tests of three chemical species (CO2, CH4, and black carbon – BC) to understand the fundamental gas cycle and climate system responses of several comprehensive (Hector v2.0, MAGICC 5.3, MAGICC 6.0) and idealized (FAIR v1.0, AR5-IR) SCMs. We find that while idealized SCMs are widely used, they fail to capture the magnitude and timescales of global mean climate responses under emissions perturbations, which can produce biased temperature results. Comprehensive SCMs, which have physically based nonlinear forcing and carbon cycle representations, show improved responses compared to idealized SCMs. Even the comprehensive SCMs, however, fail to capture the response timescales to BC emission perturbations seen recently in two general circulation models. Some comprehensive SCMs also generally respond faster than more complex models to a 4×CO2 concentration perturbation, although this was not evident for lower perturbation levels. These results suggest where improvements should be made to SCMs. Further, we demonstrate here a set of fundamental tests that we recommend as a standard evaluation suite for any SCM. Fundamental impulse tests allow users to understand differences in model responses and the impact of model selection on results.


1990 ◽  
Author(s):  
R.S. Bradley ◽  
H.F. Diaz ◽  
P.D. Jones ◽  
P.M. Kelly

Author(s):  
R. H. Duff

A material irradiated with electrons emits x-rays having energies characteristic of the elements present. Chemical combination between elements results in a small shift of the peak energies of these characteristic x-rays because chemical bonds between different elements have different energies. The energy differences of the characteristic x-rays resulting from valence electron transitions can be used to identify the chemical species present and to obtain information about the chemical bond itself. Although these peak-energy shifts have been well known for a number of years, their use for chemical-species identification in small volumes of material was not realized until the development of the electron microprobe.


Author(s):  
J. Barbillat ◽  
M. Delhaye ◽  
P. Dhamelincourt

Raman mapping, with a spatial resolution close to the diffraction limit, can help to reveal the distribution of chemical species at the surface of an heterogeneous sample.As early as 1975,three methods of sample laser illumination and detector configuration have been proposed to perform Raman mapping at the microscopic level (Fig. 1),:- Point illumination:The basic design of the instrument is a classical Raman microprobe equipped with a PM tube or either a linear photodiode array or a two-dimensional CCD detector. A laser beam is focused on a very small area ,close to the diffraction limit.In order to explore the whole surface of the sample,the specimen is moved sequentially beneath the microscope by means of a motorized XY stage. For each point analyzed, a complete spectrum is obtained from which spectral information of interest is extracted for Raman image reconstruction.- Line illuminationA narrow laser line is focused onto the sample either by a cylindrical lens or by a scanning device and is optically conjugated with the entrance slit of the stigmatic spectrograph.


Sign in / Sign up

Export Citation Format

Share Document