small shift
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 47)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Vol 10 (4) ◽  
pp. 573-582
Author(s):  
Sintia Rizki Aprilianti ◽  
Tatik Widiharih ◽  
Sudarno Sudarno

Now, Statistical quality control be a particular concern to large companies.PT XY is one of the largest nut company in Indonesia that has implemented the quality standards of a product. Max-MCUSUM control chart becomes a tool that is graphically used to monitor and evaluate whether the process is under control or nut. Based on Cheng and Thaga (2005), Max-MCUSUM control chart takes precedence over detecting small shift based on average and variability in industry data. The quality characteristic of Kacang Garing will be variables, namely broken nut skin, bean seed 1, and foam nut skin. Max-MCUSUM control chart is controlled with the control limit (h) from ARL (Average Run Length) simulation of 370 is 429,69. ARL is an average of samples that need to be decribed before it goes out of control. The research continued with multivariate capability process with MCp worth 0,905 and MCpk worth 1,355. Those value indicates that Kacang Garing has met the quality specification stipulated by PT XY. Broken nut skin becomes the most dominant cause based on pareto chart and carried out analysis by using fishbone chart so that is known the main factor causing broken nut skin are machine, material, and method. 


2021 ◽  
Vol 18 (4) ◽  
pp. 827-832
Author(s):  
A. N. Kulikov ◽  
E. V. Danilenko ◽  
A. A. Dzilikhov

Purpose: To assess the capsular tension ring implantation effect on the IOL position according to different devices in the long term period after uncomplicated phacoemulsification.Patients and methods. The study enrolled 234 patients (273 eyes) with cataract without zonular weakness. A standard examination, optical biometry and Sheimpflug imaging were performed preoperatively. In all cases phacoemulsification with IOL implantation, supported by CTR in 11 % of cases (30 eyes) was performed in 1, 3, and 6 months after surgery autorefractometry, visual acuity, biometry, OCT of anterior segment and ultrasound biomicroscopy were provided.Results. By the 3rd month a small shift of IOL towards the retina was revealed without any refraction changes. In cases with CTR implantation the anterior chamber depth was stable. According to OCT data the angle of IOL tilt in the horizontal meridian gradually decreased, the dynamics was significant from 3 months (p = 0.032). There were no changes in the vertical direction. After CTR implantation IOL position did not significantly change. There was no difference between the groups (p > 0.05) by 6 month. The phenomenon of IOL “deflection” according to OCT data was observed in 20.87 % of cases was in 1 month after operation. In the presence of CTR its frequency decreased to 15.00 %, and in the absence, it increased to 21.63 %. In every fifth case of deformation the measurements did not give us a definite reason to further consider it a “deflection” by 6 months after the operation. In 4.24 % of cases fact of IOL “deflection” was absent at the first month but appeared by the 6 month. There was not any case of CTR implantation among described cases of IOL position change.Conclusion. Fluctuation of anterior chamber depth is observed up to 3 months after uncomplicated phacoemulsification. Changes in IOL tilt angle occur throughout the observation period with a significant decrease in the horizontal plane by 6 month. Implantation of the CTR should stabilize anterior chamber depth, block the IOL tilt and also reduce the percentage of IOL deflection cases in the defined group.


Author(s):  
Gaurav Kumar ◽  
Manisha Saini ◽  
Suman Kundu

Over the last few decades, substantial progress has been made towards the understanding of cardiovascular diseases (CVDs). In-depth mechanistic insights have also provided opportunities to explore novel therapeutic targets and treatment regimens to be discovered. Therapeutic enzymes are an example of such opportunities. The balanced functioning of such enzymes protects against a variety of CVDs while on the other hand, even a small shift in the normal functioning of these enzymes may lead to deleterious outcomes. Owing to the great versatility of these enzymes, inhibition and activation are key regulatory approaches to counter the onset and progression of several cardiovascular impairments. While cardiovascular remedies are already available in excess and of course they are efficacious, a comprehensive description of novel therapeutic enzymes to combat CVDs is the need of the hour. In light of this, the regulation of the functional activity of these enzymes also opens a new avenue for the treatment approaches to be employed. This review describes the importance of non-conventional enzymes as potential candidates in several cardiovascular disorders while highlighting some of the recently targeted therapeutic enzymes in CVDs.


2021 ◽  
Vol 9 (12) ◽  
pp. 1447
Author(s):  
In-Young Ahn ◽  
Francyne Elias-Piera ◽  
Sun-Yong Ha ◽  
Sergio Rossi ◽  
Dong-U Kim

The amphipod Gondogeneia antarctica is among the most abundant benthic organisms, and a key food web species along the rapidly warming West Antarctic Peninsula (WAP). However, little is known about its trophic strategy for dealing with the extreme seasonality of Antarctic marine primary production. This study, using trophic markers, for the first time investigated seasonal dietary shifts of G. antarctica in a WAP fjord. We analyzed δ13C and δ15N in G. antarctica and its potential food sources. The isotopic signatures revealed a substantial contribution of red algae to the amphipod diet and also indicated a significant contribution of benthic diatoms. The isotope results were further supported by fatty acid (FA) analysis, which showed high similarities in FA composition (64% spring–summer, 58% fall–winter) between G. antarctica and the red algal species. G. antarctica δ13C showed a small shift seasonally (−18.9 to −21.4‰), suggesting that the main diets do not change much year-round. However, the relatively high δ15N values as for primary consumers indicated additional dietary sources such as animal parts. Interestingly, G. antarctica and its potential food sources were significantly enriched with δ15N during the fall–winter season, presumably through a degradation process, suggesting that G. antarctica consumes a substantial portion of its diets in the form of detritus. Overall, the results revealed that G. antarctica relies primarily on food sources derived from benthic primary producers throughout much of the year. Thus, G. antarctica is unlikely very affected by seasonal Antarctic primary production, and this strategy seems to have allowed them to adapt to shallow Antarctic nearshore waters.


Author(s):  
Rattikarn Taboran ◽  
Saowanit Sukparungsee

The purpose of this research is to enhance performance for detecting a change in process mean by combining modified exponentially weighted moving average and sign control charts. This is nonparametric control chart which effective alternatives to the parametric control chart so called MEWMA-Sign. The nonparametric control chart can serve when process observations is deviated from normal distribution assumption. Generally, the performance of control charts are widely measured by average run length (ARL) divided into two cases; in control ARL (ARL0) and out of control ARL (ARL1). In this paper, the performance comparison is investigated when processes are non-normal distributions. The performance of the MEWMA-Sign is compared EWMA-Sign control chart by considering from a minimum value of ARL1. The numerical results found that the MEWMASign performs better than EWMA-Sign in order to detect a very small shift of mean process. Additionally, the real application of the MEWMA-Sign and EWMA-Sign are presented.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5845
Author(s):  
Mariana Osiac ◽  
Iulian Boerasu ◽  
Madalin-Stefan Radu ◽  
Maria Jigau ◽  
Ion Tirca

Results on studies of pure tungsten oxide WO3 and 2, 3 and 4% Fe-doped WO3 grown on the sapphire substrates by reactive pulsed laser deposition technique are reported. From X-ray diffraction it results that the crystalline structures changed with the substrate temperature and the peaks diffraction having a small shift by the amount of Fe content in WO3 lattice was noticed. Scanning electron microscopy presented a random behavior of WO3 nanocrystallites size with substrate temperatures. In the presence of 2% Fe-doped WO3, the nanocrystallites size varied gradually from 60 nm to 190 nm as substrate temperature increased. The transmission spectra of the pure and 2, 3 and 4% Fe-doped WO3 films were obtained within the 300–1200 nm spectral range. The refractive index of WO3 and Fe-doped WO3 layers were calculated by the Swanepoel method. The refractive index of pure WO3 shows a variation from 2.35–1.90 and for 2% Fe-doped WO3 from 2.30–2.00, as the substrate temperature increased. The contents of 3 and 4% Fe-doped WO3 presented nearly identical values of the refractive index with pure and 2% Fe-doped WO3, in error limits, at 600 °C. The optical band gap changes with substrate temperature from 3.2 eV to 2.9 eV for pure WO3 and has a small variation with the Fe.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Alexander Robinson ◽  
Jascha Lehmann ◽  
David Barriopedro ◽  
Stefan Rahmstorf ◽  
Dim Coumou

AbstractOver the last decade, the world warmed by 0.25 °C, in-line with the roughly linear trend since the 1970s. Here we present updated analyses showing that this seemingly small shift has led to the emergence of heat extremes that would be virtually impossible without anthropogenic global warming. Also, record rainfall extremes have continued to increase worldwide and, on average, 1 in 4 rainfall records in the last decade can be attributed to climate change. Tropical regions, comprised of vulnerable countries that typically contributed least to anthropogenic climate change, continue to see the strongest increase in extremes.


Author(s):  
Vitaly A. Orlov ◽  
◽  
Roman Yu. Rudenko ◽  
Vladimir S. Prokopenko ◽  
Irina N. Orlova ◽  
...  

Collective modes of the gyrotropic motion of a magnetic vortex core in ordered arrays of triangular and square ferromagnetic film nanodots have been theoretically investigated. The dispersion relations have been derived. The dipole–dipole interaction of the magnetic moments of the magnetic vortex cores of elements has been taken into account in the approximation of a small shift from the equilibrium position. It is shown that the effective rigidity of the magnetic subsystem of triangular elements is noticeably higher than that of the subsystem of square elements of the same linear sizes. The potential application of the polygonal film nanodisks as nanoscalpels for noninvasive tumor cell surgery is discussed


2021 ◽  
Author(s):  
Francisco Severiano Carrillo ◽  
Godofredo García Salgado ◽  
Martin Salazar Villanueva

Abstract Porous silicon (PS) is a material whit a great interest due to its optical (photoluminescent) and chemical (reactive surface) properties, for this reason, it is important to find new ways to be applied in the development of new devices. In this work the optic, chemical and morphologic properties of PS compressed into a tablet were characterized. The porous silicon was removed physically from the crystalline silicon and then was compressed to obtain a tablet. The optical characterization was performed through photoluminescence (PL) spectra. The PL spectrum from the PS tablet showed a small shift to lower wavelengths in comparison with the PS layers used to obtain the tablet. The x-ray diffraction pattern showed a loss in PS tablet crystallinity after being subjected to the compression process. The morphological characterization was carried out with a scanning electron microscope and showed a compact surface with high rugosity. This result was supported by the profilometry analysis, which also showed an irregular surface. The chemical properties of the surface were characterized with Fourier transform infrared spectroscopy (FTIR). The FTIR characterization showed an oxidized and highly hydrogenated surface.


Author(s):  
I. Wilck ◽  
A. Wirtz ◽  
D. Biermann ◽  
P. Wiederkehr

AbstractThe occurrence of chatter vibrations in 5-axis milling processes is a common problem and can result in part failure, surface defects and increased wear of the cutting tool and the machine tool. In order to prevent process vibrations, machining processes can be optimized by utilizing geometric physically-based simulation systems. Since the modal parameters of the machine tool are dependent on the position of the linear and rotary axes, the dynamic behavior of milling processes can change along the NC path despite constant engagement conditions. In order to model the pose-dependent modal properties at the tool tip, the frequency response functions (FRFs) were measured at different locations of the workspace of the machine tool for various poses of the rotary axis of the spindle. To take the varying compliance within the workspace of a machine tool into account in a geometric physically-based milling process simulation, different interpolation methods for interpolating FRFs or parameter values of oscillator-based compliance models (OPV) were applied. For validation, the resulting models were analyzed and compared to measured data. In OPV interpolation, the individual oscillation modes were interpolated in their respective characteristics based on the oscillator parameters (eigenfrequencies, modal masses and damping values). In FRF interpolation, however, there was no differentiation between the modes, resulting in a wrong interpolation. It can therefore provide good results when only a small shift of the eigenfrequencies is expected, as in case of the analyzed machine tool, with only small movements of the translatory axes.


Sign in / Sign up

Export Citation Format

Share Document