scholarly journals A global MHD solar wind model with WKB Alfvén waves: Comparison with Ulysses data

2000 ◽  
Vol 105 (A6) ◽  
pp. 12675-12695 ◽  
Author(s):  
Arcadi V. Usmanov ◽  
Melvyn L. Goldstein ◽  
Bruno P. Besser ◽  
Johannes M. Fritzer
1986 ◽  
Vol 91 (A3) ◽  
pp. 2950 ◽  
Author(s):  
Ruth Esser ◽  
Egil Leer ◽  
Shadia R. Habbal ◽  
George L. Withbroe

2010 ◽  
Vol 725 (1) ◽  
pp. 1373-1383 ◽  
Author(s):  
B. van der Holst ◽  
W. B. Manchester ◽  
R. A. Frazin ◽  
A. M. Vásquez ◽  
G. Tóth ◽  
...  

1995 ◽  
Vol 13 (5) ◽  
pp. 459-474 ◽  
Author(s):  
J. M. Schmidt ◽  
E. Marsch

Abstract. In this paper we give a survey of detailed algebraic developments of a solar wind turbulence model. The numerical solution of the coupled system of spectral transfer equations for turbulence composed of Alfvén waves and convective structures or two-dimensional turbulence is prepared. The underlying theory of spectral transfer equations was established by several authors in the early 1990s. The related numerical turbulence model which is elaborated in detail in this paper is based on a rotationally symmetric solar wind model for the background magnetic and flow velocity fields with the full geometry of Parker's spiral which has to be inserted into the transfer equations. Various sources and sinks for turbulent energy are included and appropriately modelled analytically. Spherical expansion terms related to radial gradients of the background velocity fields are considered as far as possible within a rotational symmetric solar wind model, which excludes vorticity effects. Furthermore, nonlinear interaction terms are considered, justified by phenomenological arguments and evaluated by dimensional analysis. Moreover, parametric conversion terms for Alfvén waves and wave-structure interactions are modelled and a generalized spectral flux function for the residual energy eR is introduced. In addition, we compensate the spectra for WKB trends and f -5/3-slopes in order to prepare a convenient form of the equations for numerical treatment. The modelling of source and sink terms includes a special analytical treatment for correlation tensors. This first part presents a summary of the main ideas and the special approximations used for all these terms, together with details on the basic steps of the algebraic calculations. The description of the numerical scheme and a survey of the numerical results of our model, as well as a discussion of the main physical results are contained in a companion paper.


2007 ◽  
Vol 44 (3) ◽  
pp. 533-536 ◽  
Author(s):  
T. M. Mishonov ◽  
M. V. Stoev ◽  
Y. G. Maneva

1999 ◽  
Vol 17 (4) ◽  
pp. 463-489 ◽  
Author(s):  
P. Prikryl ◽  
J. W. MacDougall ◽  
I. F. Grant ◽  
D. P. Steele ◽  
G. J. Sofko ◽  
...  

Abstract. A long series of polar patches was observed by ionosondes and an all-sky imager during a disturbed period (Kp = 7- and IMF Bz < 0). The ionosondes measured electron densities of up to 9 × 1011 m-3 in the patch center, an increase above the density minimum between patches by a factor of \\sim4.5. Bands of F-region irregularities generated at the equatorward edge of the patches were tracked by HF radars. The backscatter bands were swept northward and eastward across the polar cap in a fan-like formation as the afternoon convection cell expanded due to the IMF By > 0. Near the north magnetic pole, an all-sky imager observed the 630-nm emission patches of a distinctly band-like shape drifting northeastward to eastward. The 630-nm emission patches were associated with the density patches and backscatter bands. The patches originated in, or near, the cusp footprint where they were formed by convection bursts (flow channel events, FCEs) structuring the solar EUV-produced photoionization and the particle-produced auroral/cusp ionization by segmenting it into elongated patches. Just equatorward of the cusp footprint Pc5 field line resonances (FLRs) were observed by magnetometers, riometers and VHF/HF radars. The AC electric field associated with the FLRs resulted in a poleward-progressing zonal flow pattern and backscatter bands. The VHF radar Doppler spectra indicated the presence of steep electron density gradients which, through the gradient drift instability, can lead to the generation of the ionospheric irregularities found in patches. The FLRs and FCEs were associated with poleward-progressing DPY currents (Hall currents modulated by the IMF By) and riometer absorption enhancements. The temporal and spatial characteristics of the VHF backscatter and associated riometer absorptions closely resembled those of poleward moving auroral forms (PMAFs). In the solar wind, IMP 8 observed large amplitude Alfvén waves that were correlated with Pc5 pulsations observed by the ground magnetometers, riometers and radars. It is concluded that the FLRs and FCEs that produced patches were driven by solar wind Alfvén waves coupling to the dayside magnetosphere. During a period of southward IMF the dawn-dusk electric field associated with the Alfvén waves modulated the subsolar magnetic reconnection into pulses that resulted in convection flow bursts mapping to the ionospheric footprint of the cusp.Key words. Ionosphere (polar ionosphere). Magneto- spheric physics (magnetosphere-ionosphere interactions; polar wind-magnetosphere interactions).


2020 ◽  
Vol 901 (2) ◽  
pp. L23
Author(s):  
M. Nakanotani ◽  
G. P. Zank ◽  
L. Adhikari ◽  
L.-L. Zhao ◽  
J. Giacalone ◽  
...  

2014 ◽  
Vol 796 (2) ◽  
pp. 111 ◽  
Author(s):  
Roberto Lionello ◽  
Marco Velli ◽  
Cooper Downs ◽  
Jon A. Linker ◽  
Zoran Mikić

Sign in / Sign up

Export Citation Format

Share Document