scholarly journals Multisatellite determination of the relativistic electron phase space density at geosynchronous orbit: Methodology and results during geomagnetically quiet times

2005 ◽  
Vol 110 (A10) ◽  
Author(s):  
Y. Chen
2013 ◽  
Vol 118 (5) ◽  
pp. 2196-2212 ◽  
Author(s):  
D. L. Turner ◽  
V. Angelopoulos ◽  
W. Li ◽  
M. D. Hartinger ◽  
M. Usanova ◽  
...  

2009 ◽  
Vol 27 (2) ◽  
pp. 851-859 ◽  
Author(s):  
Y. Shi ◽  
E. Zesta ◽  
L. R. Lyons

Abstract. Determination of the radial profile of phase space density of relativistic electrons at constant adiabatic invariants is crucial for identifying the source for them within the outer radiation belt. The commonly used method is to convert flux observed at fixed energy to phase space density at constant first, second and third adiabatic invariants, which requires an empirical global magnetic field model and thus might produce some uncertainties in the final results. From a different perspective, in this paper we indirectly infer the shape of the radial profile of phase space density of relativistic electrons near the geosynchronous region by statistically examining the geosynchronous energetic flux response to 128 solar wind dynamic pressure enhancements during the years 2000 to 2003. We thus avoid the disadvantage of using empirical magnetic field models. Our results show that the flux response is species and energy dependent. For protons and low-energy electrons, the primary response to magnetospheric compression is an increase in flux at geosynchronous orbit. For relativistic electrons, the dominant response is a decrease in flux, which implies that the phase space density decreases toward increasing radial distance at geosynchronous orbit and leads to a local peak inside of geosynchronous orbit. The flux response of protons and non-relativistic electrons could result from a phase density that increases toward increasing radial distance, but this cannot be determined for sure due to the particle energization associated with pressure enhancements. Our results for relativistic electrons are consistent with previous results obtained using magnetic field models, thus providing additional confirmation that these results are correct and indicating that they are not the result of errors in their selected magnetic field model.


2006 ◽  
Vol 73 (2) ◽  
Author(s):  
G. Ferrari ◽  
R. E. Drullinger ◽  
N. Poli ◽  
F. Sorrentino ◽  
G. M. Tino

2012 ◽  
Vol 117 (A5) ◽  
pp. n/a-n/a ◽  
Author(s):  
Bingxian Luo ◽  
Xinlin Li ◽  
Weichao Tu ◽  
Jiancun Gong ◽  
Siqing Liu

2003 ◽  
Vol 30 (4) ◽  
pp. 517-523 ◽  
Author(s):  
Q. H. Zhang ◽  
J. Barrette ◽  
C. Gale

2021 ◽  
Author(s):  
Milla Kalliokoski ◽  
Emilia Kilpua ◽  
Adnane Osmane ◽  
Allison Jaynes ◽  
Drew Turner ◽  
...  

<p>The energetic electron content in the Van Allen radiation belts surrounding the Earth can vary dramatically on timescales from minutes to days, and these electrons present a hazard for spacecraft traversing the belts. The outer belt response to solar wind driving is however yet largely unpredictable. Here we investigate the driving of the belts by sheath regions preceding interplanetary coronal mass ejections. Electron dynamics in the belts is governed by various competing acceleration, transport and loss processes. We analyzed electron phase space density to compare the energization and loss mechanisms during a geoeffective and a non-geoeffective sheath region. These two case studies indicate that ULF-driven inward and outward radial transport, together with the incursions of the magnetopause, play a key role in causing the outer belt electron flux variations. Chorus waves also likely contribute to energization during the geoeffective event. A global picture of the wave activity is achieved through a chorus proxy utilizing POES measurements. We highlight that also the non-geoeffective sheath presented distinct changes in outer belt electron fluxes, which is also evidenced by our statistical study of outer belt electron fluxes during sheath events. While not as intense as during geoeffective sheaths, significant changes in outer belt electron fluxes occur also during sheaths that do not cause major geomagnetic disturbances.</p>


2016 ◽  
Vol 462 (1) ◽  
pp. 663-680 ◽  
Author(s):  
Iryna Butsky ◽  
Andrea V. Macciò ◽  
Aaron A. Dutton ◽  
Liang Wang ◽  
Aura Obreja ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document