Effective real refractive index of dry aerosols in the Antarctic boundary layer

2006 ◽  
Vol 33 (6) ◽  
Author(s):  
A. Virkkula ◽  
I. K. Koponen ◽  
K. Teinilä ◽  
R. Hillamo ◽  
V-M. Kerminen ◽  
...  
Tellus B ◽  
2007 ◽  
Vol 59 (1) ◽  
pp. 22-38 ◽  
Author(s):  
Katie A. Read ◽  
Alastair C. Lewis ◽  
Rhian A. Salmon ◽  
Anna E. Jones ◽  
Stéphane Bauguitte

2007 ◽  
Vol 7 (2) ◽  
pp. 4127-4163 ◽  
Author(s):  
A. E. Jones ◽  
E. W. Wolff ◽  
D. Ames ◽  
S. J.-B. Bauguitte ◽  
K. C. Clemitshaw ◽  
...  

Abstract. Measurements of individual NOy components were carried out at Halley station in coastal Antarctica. The measurements were made as part of the CHABLIS campaign (Chemistry of the Antarctic Boundary Layer and the Interface with Snow) and cover over half a year, from austral winter 2004 through to austral summer 2005. They are the longest duration and most extensive NOy budget study carried out to date in polar regions. Results show clear dominance of organic NOy compounds (PAN and MeONO2) during the winter months, with low concentrations of inorganic NOy, but a reversal of this situation towards summer when the balance shifts in favour of inorganic NOy. Multi-seasonal measurements of surface snow nitrate correlate strongly with inorganic NOy species. One case study in August suggested that particulate nitrate was the dominant source of nitrate to the snowpack, but this was not the consistent picture throughout the measurement period. An analysis of NOx production rates showed that emissions of NOx from the snowpack dominate over gas-phase sources of "new NOx", suggesting that, for certain periods in the past, the flux of NOx into the boundary layer can be calculated from ice core nitrate data.


2008 ◽  
Vol 8 (1) ◽  
pp. 2657-2694 ◽  
Author(s):  
K. A. Read ◽  
A. C. Lewis ◽  
S. Bauguitte ◽  
A. M. Rankin ◽  
R. A. Salmon ◽  
...  

Abstract. In situ measurements of dimethyl sulphide (DMS) and methane sulphonic acid (MSA) were made at Halley Station, Antarctica (75°35´S, 26°19W) during February 2004–February 2005 as part of the CHABLIS (Chemistry of the Antarctic boundary layer and the interface with snow) project. DMS was present in the atmosphere at Halley all year (average 38.1±43 pptV) with a maximum monthly average value of 113.6±52 pptV in February 2004 coinciding temporally with a minimum in sea extent. Whilst seasonal variability and interannual variability can be attributed to a number of factors, short term variability appeared strongly dependent on air mass origin and trajectory pressure height. The MSA and derived non-sea salt sulphate (nss-SO42−) measurements showed no correlation with those of DMS (regression R2=0.039, and R2=0.001, respectively) in-line with the complexity of DMS fluxes, conflicting oxidation routes, transport of air masses and variable spatial coverage of both sea-ice and phytoplankton. MSA was generally low throughout the year, with an annual average of 42 ng m−3 (9.8±13.2 pptV), however MSA: nss-SO42− ratios were high implying a dominance of the addition oxidation route for DMS. Including BrO measurements into MSA production calculations demonstrated the significance of BrO on DMS oxidation within this region of the atmosphere in austral summer. Assuming an 80% yield of DMSO from the reaction of DMS+BrO, an atmospheric concentration of BrO equal to 3 pptV increased the calculated MSA production from DMS by a factor of 9 above that obtained when considering only reaction with the hydroxyl radical.


1996 ◽  
Vol 19 (4) ◽  
pp. 487-504 ◽  
Author(s):  
G. Ficca ◽  
M. Pangia ◽  
S. Pierini ◽  
R. Purini ◽  
E. Sansone

2008 ◽  
Vol 8 (14) ◽  
pp. 3789-3803 ◽  
Author(s):  
A. E. Jones ◽  
E. W. Wolff ◽  
R. A. Salmon ◽  
S. J.-B. Bauguitte ◽  
H. K. Roscoe ◽  
...  

Abstract. CHABLIS (Chemistry of the Antarctic Boundary Layer and the Interface with Snow) was a collaborative UK research project aimed at probing the detailed chemistry of the Antarctic boundary layer and the exchange of trace gases at the snow surface. The centre-piece to CHABLIS was the measurement campaign, conducted at the British Antarctic Survey station, Halley, in coastal Antarctica, from January 2004 through to February 2005. The campaign measurements covered an extremely wide range of species allowing investigations to be carried out within the broad context of boundary layer chemistry. Here we present an overview of the CHABLIS campaign. We provide details of the measurement location and introduce the Clean Air Sector Laboratory (CASLab) where the majority of the instruments were housed. We describe the meteorological conditions experienced during the campaign and present supporting chemical data, both of which provide a context within which to view the campaign results. Finally we provide a brief summary of highlights from the measurement campaign. Unexpectedly high halogen concentrations profoundly affect the chemistry of many species at Halley throughout the sunlit months, with a secondary role played by emissions from the snowpack. This overarching role for halogens in coastal Antarctic boundary layer chemistry was completely unanticipated, and the results have led to a step-change in our thinking and understanding.


2008 ◽  
Vol 8 (2) ◽  
pp. 5137-5181 ◽  
Author(s):  
A. E. Jones ◽  
E. W. Wolff ◽  
R. A. Salmon ◽  
S. J.-B. Bauguitte ◽  
H. K. Roscoe ◽  
...  

Abstract. CHABLIS (Chemistry of the Antarctic Boundary Layer and the Interface with Snow) was a collaborative UK research project aimed at probing the detailed chemistry of the Antarctic boundary layer and the exchange of trace gases at the snow surface. The centre-piece to CHABLIS was the measurement campaign, conducted at the British Antarctic Survey station, Halley, in coastal Antarctica, from January 2004 through to February 2005. The campaign measurements covered an extremely wide range of species allowing investigations to be carried out within the broad context of boundary layer chemistry. Here we present an overview of the CHABLIS campaign. We provide details of the measurement location and introduce the Clean Air Sector Laboratory (CASLab) where the majority of the instruments were housed. We describe the meteorological conditions experienced during the campaign and present supporting chemical data, both of which provide a context within which to view the campaign results. Finally we provide a brief summary of highlights from the measurement campaign. Unexpectedly high halogen concentrations profoundly affect the chemistry of many species at Halley throughout the sunlit months, with a secondary role played by emissions from the snowpack. This overarching role for halogens in coastal Antarctic boundary layer chemistry was completely unanticipated, and the results have led to a step-change in our thinking and understanding.


Sign in / Sign up

Export Citation Format

Share Document