scholarly journals A global model of cometary tail disconnection events triggered by solar wind magnetic variations

2007 ◽  
Vol 112 (A5) ◽  
pp. n/a-n/a ◽  
Author(s):  
Ying-Dong Jia ◽  
Michael R. Combi ◽  
Kenneth C. Hansen ◽  
Tamas I. Gombosi
Solar Physics ◽  
1991 ◽  
Vol 132 (2) ◽  
pp. 395-407
Author(s):  
Jun-Ichi Watanabe

Solar Physics ◽  
2018 ◽  
Vol 293 (5) ◽  
Author(s):  
Nadezhda Zolotova ◽  
Yuriy Sizonenko ◽  
Mikhail Vokhmyanin ◽  
Igor Veselovsky

2021 ◽  
Author(s):  
Nicolas André ◽  
Team Spider

<p>The H2020 Europlanet-2020 programme, which ended on Aug 31<sup>st</sup>, 2019, included an activity called PSWS (Planetary Space Weather Services), which provided 12 services distributed over four different domains (A. Prediction, B. Detection, C. Modelling, D. Alerts) and accessed through the PSWS portal (http://planetaryspaceweather-europlanet.irap.omp.eu/):</p> <p>A1. 1D MHD Solar Wind Prediction Tool – HELIOPROPA,</p> <p>A2. Propagation Tool,</p> <p>A3. Meteor showers,</p> <p>A4. Cometary tail crossings – TAILCATCHER,</p> <p>B1. Lunar impacts – ALFIE,</p> <p>B2. Giant planet fireballs – DeTeCt3.1,</p> <p>B3. Cometary tails – WINDSOCKS,</p> <p>C1. Earth, Mars, Venus, Jupiter coupling- TRANSPLANET,</p> <p>C2. Mars radiation environment – RADMAREE,</p> <p>C3. Giant planet magnetodiscs – MAGNETODISC,</p> <p>C4. Jupiter’s thermosphere, D. Alerts.</p> <p>In the framework of the ongoing Europlanet-2024 programme, SPIDER will extend PSWS domains (A. Prediction, C. Modelling, E. Databases) services and give the European planetary scientists, space agencies and industries access to 6 unique, publicly available and sophisticated services in order to model planetary environments and solar wind interactions through the deployment of a dedicated run on request infrastructure and associated databases.</p> <p>C5. A service for runs on request of models of Jupiter’s moon exospheres as well as the exosphere of Mercury,</p> <p>C6. A service to connect the open-source Spacecraft-Plasma Interaction Software (SPIS) software with models of space environments in order to compute the effect of spacecraft potential on scientific instruments onboard space missions. Pre-configured simulations will be made for Bepi-Colombo and JUICE missions,</p> <p>C7. A service for runs on request of particle tracing models in planetary magnetospheres,</p> <p>E1. A database of the high-energy particle flux proxy at Mars, Venus and comet 67P using background counts observed in the data obtained by the plasma instruments onboard Mars Express (operational from 2003), Venus Express (2006–2014), and Rosetta (2014–2015);</p> <p>E2. A simulation database for Mercury and Jupiter’s moons magnetospheres and link them with prediction of the solar wind parameters from Europlanet-RI H2020 PSWS services.</p> <p>A1. An extension of the Europlanet-RI H2020 PSWS Heliopropa service in order to ingest new observations from Solar missions like the ESA Solar Orbiter or NASA Solar Parker Probe missions and use them as input parameters for solar wind prediction;</p> <p>The developments performed during the second year of the project will be discussed in the presentation.</p> <p>The Europlanet 2020 Research Infrastructure project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654208.</p>


2009 ◽  
Vol 12 (2) ◽  
pp. 68-75
Author(s):  
M.J.F. Al Bermani ◽  
◽  
S.A. Alhamed ◽  
S. Z. Khalaf ◽  
H.Sh. Ali ◽  
...  

1984 ◽  
Vol 75 ◽  
pp. 597
Author(s):  
E. Grün ◽  
G.E. Morfill ◽  
T.V. Johnson ◽  
G.H. Schwehm

ABSTRACTSaturn's broad E ring, the narrow G ring and the structured and apparently time variable F ring(s), contain many micron and sub-micron sized particles, which make up the “visible” component. These rings (or ring systems) are in direct contact with magnetospheric plasma. Fluctuations in the plasma density and/or mean energy, due to magnetospheric and solar wind processes, may induce stochastic charge variations on the dust particles, which in turn lead to an orbit perturbation and spatial diffusion. It is suggested that the extent of the E ring and the braided, kinky structure of certain portions of the F rings as well as possible time variations are a result of plasma induced electromagnetic perturbations and drag forces. The G ring, in this scenario, requires some form of shepherding and should be akin to the F ring in structure. Sputtering of micron-sized dust particles in the E ring by magnetospheric ions yields lifetimes of 102to 104years. This effect as well as the plasma induced transport processes require an active source for the E ring, probably Enceladus.


Author(s):  
S. R. Singh ◽  
H. J. Fan ◽  
L. D. Marks

Since the original observation that the surfaces of materials undergo radiation damage in the electron microscope similar to that observed by more conventional surface science techniques there has been substantial interest in understanding these phenomena in more detail; for a review see. For instance, surface damage in a microscope mimics damage in the space environment due to the solar wind and electron beam lithographic operations.However, purely qualitative experiments that have been done in the past are inadequate. In addition, many experiments performed in conventional microscopes may be inaccurate. What is needed is careful quantitative analysis including comparisons of the behavior in UHV versus that in a conventional microscope. In this paper we will present results of quantitative analysis which clearly demonstrate that the phenomena of importance are diffusion controlled; more detailed presentations of the data have been published elsewhere.As an illustration of the results, Figure 1 shows a plot of the shrinkage of a single, roughly spherical particle of WO3 versus time (dose) driven by oxygen desorption from the surface.


Sign in / Sign up

Export Citation Format

Share Document