surface science
Recently Published Documents


TOTAL DOCUMENTS

2205
(FIVE YEARS 218)

H-INDEX

85
(FIVE YEARS 8)

Author(s):  
Anu Chandran ◽  
Varun Raghavan ◽  
Bhaskaran Chalil ◽  
Kamalasanan . ◽  
C. C. Velayudhan ◽  
...  

Nanotechnology is the use of matter on an atomic, molecular, and supramolecular scale for various purposes. Nanotechnology field of application is very much diverse which includes surface science, organic chemistry, molecular biology, semiconductor physics, energy storage, engineering, microfabrication, and molecular engineering. Its medical application ranges from biological devices, nano-electronic biosensors, and to future biological machines. The main issue nowadays for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials. Lot more functionalities can be added to nanomaterials by interfacing them with biological structures. The size of nanomaterials is similar most biological molecules and so useful for both in vivo and in vitro biomedical research and applications. The integration of nanomaterials with biology had paved path to the development of diagnostic devices, contrast agents, analytical tools, physical therapy applications and drug delivery vehicles.


2021 ◽  
Author(s):  
Shimon Yudovich ◽  
Adan Marzouqe ◽  
Joseph Kantorovitsch ◽  
Eti Teblum ◽  
Tao Chen ◽  
...  

Supported lipid bilayers are a well-developed model system for the study of membranes and their associated proteins, such as membrane channels, enzymes, and receptors. These versatile model membranes can be made from various components, ranging from simple synthetic phospholipids to complex mixtures of constituents, mimicking the cell membrane with its relevant physiochemical and molecular phenomena. In addition, the high stability of supported lipids bilayers allows for their study via a wide array of experimental probes. In this work, we describe a platform for supported lipid bilayers that is accessible both electrically and optically. We show that the polarization of the supported membrane can be electrically controlled and optically probed using voltage-sensitive dyes. Membrane polarization dynamics is understood through electrochemical impedance spectroscopy and the analysis of the equivalent electrical circuit. We also describe the effect of the conducting electrode layer on the fluorescence of the optical probe through metal-induced energy transfer. We conclude with a discussion on possible applications of this platform for the study of voltage-dependent membrane proteins and other processes in membrane biology and surface science.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Hideaki Miyamoto ◽  
Takafumi Niihara ◽  
Koji Wada ◽  
Kazunori Ogawa ◽  
Hiroki Senshu ◽  
...  

AbstractThe Martian Moons eXploration (MMX) mission will study the Martian moons Phobos and Deimos, Mars, and their environments. The mission scenario includes both landing on the surface of Phobos to collect samples and deploying a small rover for in situ observations. Engineering safeties and scientific planning for these operations require appropriate evaluations of the surface environment of Phobos. Thus, the mission team organized the Landing Operation Working Team (LOWT) and Surface Science and Geology Sub-Science Team (SSG-SST), whose view of the Phobos environment is summarized in this paper. While orbital and large-scale characteristics of Phobos are relatively well known, characteristics of the surface regolith, including the particle size-distributions, the packing density, and the mechanical properties, are difficult to constrain. Therefore, we developed several types of simulated soil materials (simulant), such as UTPS-TB (University of Tokyo Phobos Simulant, Tagish Lake based), UTPS-IB (Impact-hypothesis based), and UTPS-S (Simpler version) for engineering and scientific evaluation experiments.


Surfaces ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 293-294
Author(s):  
Kurt W. Kolasinski

On the occasion of his 70th birthday, we celebrate the career of our Editor-in-Chief, Professor Gaetano Granozzi [...]


2021 ◽  
pp. 100647
Author(s):  
Prue Davison ◽  
Aart Kleyn ◽  
Hrvoje Petek
Keyword(s):  

2021 ◽  
Author(s):  
Dave Fernig ◽  
Dunhao Su

Surface plasmon resonance uses gold surfaces for sensing. Manufacturers provide a range of pre-functionalised surfaces, but these are often prone to non-specific binding problems. In other surface science sensing techniques a range of surface functionalisation approaches have been described. Here, the preparation of a self-assembled monolayer (SAM) of a thiolated oleyl ethylene glycol, incorporating a defined mole % of biotinylated ligands , on a gold surface is described. This allows the formation of a streptavidin layer on the SAM with control over the average surface coverage of streptavidin. Biotinylated ligands can then be immobilised on the streptavidin. Such surfaces have proved to be very resistant to non-specific binding and they are easily implemented on the sensor surfaces of commercial (surface plasmon resonance) SPR instruments. This is adapted from a published method: Migliorini, E. et al. Well-defined biomimetic surfaces to characterize glycosaminoglycan-mediated interactions on the molecular, supramolecular and cellular levels. Biomaterials (2014) doi:10.1016/j.biomaterials.2014.07.017.


Sign in / Sign up

Export Citation Format

Share Document