scholarly journals Correction to “Current deformation rates and extrusion of the northwestern Okhotsk plate, northeast Russia”

2009 ◽  
Vol 36 (2) ◽  
pp. n/a-n/a
Author(s):  
D. Hindle ◽  
K. Fujita ◽  
K. Mackey
2009 ◽  
Vol 4 ◽  
pp. 117-145 ◽  
Author(s):  
K. Fujita ◽  
B. M. Koz'min ◽  
K. G. Mackey ◽  
S. A. Riegel ◽  
M. S. McLean ◽  
...  

Abstract. The Chersky seismic belt represents a zone of deformation between the North American and Eurasian plates in northeast Russia. The belt extends from the Laptev Sea into the Chersky Range where it splits into two branches. One branch extends to Kamchatka and the Aleutian-Kurile Junction, while the other branch extends south towards Sakhalin Island. Focal mechanisms indicate a change from extension to transpression in the northern Verkhoyansk Range and generally left-lateral transpression in the Chersky Range extending to northern Kamchatka. The few focal mechanisms on the second branch suggest right-lateral transpression. A large number of faults, sub-parallel to the seismicity and presumed to be strike-slip, are visible in satellite imagery and topographic maps and are also associated with seismically generated landslides. These data support a model in which the Sea of Okhotsk forms the core of a separate Okhotsk microplate surrounded by diffuse boundaries on the north and west. Microseismicity in continental northeast Russia is most heavily concentrated within and between the fault systems along the northern boundary of the proposed Okhotsk plate and indicates a high level of deformation. The sense of slip on the faults (both from focal mechanisms and geology) are also generally consistent with the extrusion of the Okhotsk plate to the southeast as it is compressed between its larger neighbors. The northernmost part of the Okhotsk plate may be decoupled to some degree from the more stable central Sea of Okhotsk.


2018 ◽  
Vol 481 (3) ◽  
pp. 281-284
Author(s):  
E. Kolova ◽  
◽  
H. Savva ◽  
A. Sidorov ◽  
A. Volkov ◽  
...  

1994 ◽  
Vol 36 (12) ◽  
pp. 1113-1138 ◽  
Author(s):  
Roman A. Eremin ◽  
Sergey V. Voroshin ◽  
Viktor A. Sidorov ◽  
Vasiliy G. Shakhtyrov ◽  
Viktor A. Pristavko ◽  
...  

2013 ◽  
Vol 9 (1) ◽  
pp. 433-446 ◽  
Author(s):  
P. S. Minyuk ◽  
T. V. Subbotnikova ◽  
L. L. Brown ◽  
K. J. Murdock

Abstract. Vivianite, a hydrated iron phosphate, is abundant in sediments of Lake El'gygytgyn, located in the Anadyr Mountains of central Chukotka, northeastern Russia (67°30′ N, 172°05′ E). Magnetic measurements, including mass-specific low-field AC magnetic susceptibility, field-dependent magnetic susceptibility, hysteresis parameters, temperature dependence of the induced magnetization, as well as susceptibility in different heating media, provide ample information on vivianite nodules. Electron microprobe analyses, electron microscopy and energy dispersive spectroscopy were used to identify diagnostic minerals. Vivianite nodules are abundant in both sediments of cold (anoxic) and warm (oxic) stages. Magnetic susceptibility of the nodules varies from 0.78 × 10−6 m3 kg−1 to 1.72 × 10−6 m3 kg−1 (average = 1.05 × 10−6 m3 kg−1) and is higher than the susceptibility of sediments from the cold intervals. Magnetic properties of vivianite are due to the respective product of oxidation as well as sediment and mineral inclusions. Three types of curves for high-temperature dependent susceptibility of vivianite indicate different degrees of oxidation and inclusions in the nodules. Vivianite acts as a reductant and reduces hematite to magnetite and masks the goethite–hematite transition during heating. Heating vivianite and sulfur mixtures stimulates the formation of monoclinic pyrrhotite. An additive of arsenic inhibits the formation of magnetite prior to its Curie temperature. Heating selective vivianite and pyrite mixtures leads to formation of several different minerals – magnetite, monoclinic pyrrhotite, and hexagonal pyrrhotite, and makes it difficult to interpret the thermomagnetic curves.


2019 ◽  
Vol 96 (8) ◽  
pp. 766-769 ◽  
Author(s):  
Inessa V. Averyanova ◽  
S. I. Vdovenko ◽  
A. L. Maksimov

Natural and climatic conditions of the environment of Northeast Russia and particularly Magadan region are the very factor mostly influencing adaptive responses by individuals inhabiting the region. Compensatory and adaptive responses in indigenes and newcomers of the region can be assumed to have their specific features. In 2009 there was executed the examination of the cardiovascular and respiratory systems and gas exchange in 392 cases aged of 17-19 years, including Europeans (Caucasians) born in the North in the 1st-2nd generation and indigenes. The methodologically similar study was carried out in 2014 in 265 persons, referred to the same cohorts of North-born Caucasians and Indigenes from the Magadan region. The results of the study executed in 2009 testified to a small number of physiological parameters that were reliably different in Caucasians vs. Indigene subjects. In 2014 no difference was found between the two examined cohorts throughout the observed parameters. The revealed changes in gas exchange, external respiration and cardiovascular systems demonstrated by modern young Indigenes of Northeast Russia testified to the fall in the effectiveness of their breathing. All that makes them farther from the classic “polar metabolic type” and their morphofunctional status becomes closer to European male subjects of Northeast Russia. Thus, we can observe a clear tendency towards “convergence in programs” of the adaptive changes between populations of the North residents undergoing similar natural, environmental and social factors.


2021 ◽  
Vol 15 (1) ◽  
pp. 51-59
Author(s):  
I. V. Brynko ◽  
G. O. Polzunenkov ◽  
A. S. Biakov ◽  
I. L. Vedernikov

Sign in / Sign up

Export Citation Format

Share Document