scholarly journals Dissolved noble gas and isotopic tracers reveal vulnerability of groundwater in a small, high‐elevation catchment to predicted climate changes

2010 ◽  
Vol 46 (10) ◽  
Author(s):  
Michael J. Singleton ◽  
Jean E. Moran
Alpine Botany ◽  
2021 ◽  
Author(s):  
Christian Parisod

AbstractThe main, continuous mountain range of the European Alpine System (i.e., the Alps) hosts a diversified pool of species whose evolution has long been investigated. The legacy of past climate changes on the distribution of high-elevation plants as well as taxa differentially adapted to the mosaic of edaphic conditions (i.e., surmised ecotypes on calcareous, siliceous, serpentine bedrocks) and the origin of new species are here discussed based on available evidence from endemic taxa across the Alps. The integration of main spatial and ecological patterns within and among species supports speciation driven by spatial isolation in main glacial refugia where plant populations survived during cold phases and hindered by intense gene flow along main expansion pathways during warm phases. Despite patterns of genetic differentiation matching environmental heterogeneity, processes underlying the dynamics of distribution ranges likely promoted recurrent homogenization of incipient divergence and generally hindered the completion of speciation (except for cases of hybrid speciation). Even intense selective pressures on toxic bedrocks such as serpentine seemingly fail to support the completion of speciation. Accordingly, typical scenarios of ecological speciation whereby local adaptation to environmental heterogeneity initiates and supports long-term reduction of gene flow may rarely be at the origin of stable species in the Alps. Although consistent with neutral processes whereby spatial isolation driven by past climate changes promoted reproductive isolation and yielded limited diversification, mechanisms at the origin of new species across heterogeneous landscapes of the Alps remain insufficiently known. Necessary advances to reliably understand the evolution of biodiversity in the Alps and identify possible museums or cradles of variation in face of climate changes are discussed.


Environments ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 79
Author(s):  
Rosalba Padula ◽  
Antonella Carosi ◽  
Alessandro Rossetti ◽  
Massimo Lorenzoni

Temporary high-elevation lakes represent vulnerable and unstable environments strongly threatened by tourism, hydrogeological transformations and climate changes. In-depth scientific knowledge on these peculiar habitats is needed, on which to base integrated and sustainable management plans. Freshwater diatoms, thanks to their high diversity and their particular sensitivity to the water chemistry, can be considered powerful ecological indicators, as they are able to reflect environmental changes over time. The aim of the present study was to analyze the diatomic diversity of the Pilato and Palazzo Borghese lakes, two small temporary high-mountain basins, falling in a protected area within the Apennine mountains chain (central Italy). Diatoms data were collected, at the same time as 12 physicochemical parameters, through six microhabitat samplings, from 17 June to 30 August 2019. In both lakes, a total of 111 diatomic species and varieties were identified. The most species-rich genera were Gomphonema, Navicula, and Nitzschia. The Pilato Lake showed a diatomic community dominated by few species, favored by more stable and predictable environmental conditions than the Palazzo Borghese Lake, which hosted a more diversified community, guaranteed by greater spatial and temporal heterogeneity. Both lakes were characterized by the presence of diatomic species typical of good quality waters. The occurrence of numerous aerial species reflected adaptation strategies adopted to colonize environments subjected to extended drought periods. Endangered diatomic species of particular conservational interest were recorded, confirming the need to preserve their habitats.


2021 ◽  
Author(s):  
Yuan Qiu ◽  
Jinming Feng ◽  
Zhongwei Yan ◽  
Jun Wang

Abstract Central Asia (CA) is among the most vulnerable regions to climate change due to the fragile ecosystems, frequent natural hazards, strained water resources, and accelerated glacier melting, which underscores the need to achieve robust projection of regional climate change. In this study, we applied three bias-corrected global climate models (GCMs) to conduct 9km-resolution regional climate simulations in CA for the present (1986–2005) and future (2031–2050) periods. Dynamical downscaling based on multiple bias-corrected GCM outputs obtains numerous added values not only in reproducing the historical climate but also in projecting the climate changes in CA, in comparison to the original GCMs. The regional climate model (RCM) simulations indicate significant warming over CA in the near-term future, with the regional mean increase of annual daily mean temperature (Tmean) in a range of 1.63–2.01℃, relative to the present period. This increase is expected to be higher north of ~ 45°N in each season except summer and the high-elevation areas have a weaker warming signal than the plains through the year. The season with the largest warming rate is not consistent among the RCM simulations, highlighting the necessity of using multiple GCMs as the boundary conditions to give a range of the projected climate changes. A slight increase in annual precipitation is consistently projected in most plain areas, although the changes over few areas are statistically significant. The climate projections presented here serve as a robust scientific basis for assessment of future risk from climate change in CA.


2021 ◽  
Author(s):  
Odiney Alvarez-Campos ◽  
Elizabeth J. Olson ◽  
Marty D. Frisbee ◽  
Sebastián A. Zuñiga Medina ◽  
José Díaz Rodríguez ◽  
...  

Abstract. Improving our understanding of hydrogeological processes on the western flank of the central Andes is critical to communities living in this arid region. Groundwater emerging as springs at low elevations provides water for drinking, agriculture, and baseflow. Some springs also have recreation or religious significance. However, the high elevation sources of recharge and specific groundwater flowpaths that support these springs and convey groundwater to lower elevations in southern Peru remain poorly quantified in this geologically complex environment. The objectives of this study were to identify recharge zones and groundwater flowpaths supporting natural springs east of the city of Arequipa in the volcanic mountain terrain, particularly, the potential for recharge within the high-elevation closed-basin Lagunas Salinas salar. We used geochemical and isotopic tracers in springs, surface waters (rivers and lakes), and precipitation (rain and snow) sampled from March 2019 through February 2020. We obtained monthly samples from six springs, bimonthly samples from four rivers, and various samples from high-elevation springs during the dry season. We analyzed stable water isotopes (δ18O and δ2H) and general chemistry of springs, rivers, local rainfall, and snow from Pichu Pichu volcano. The monthly isotopic composition of spring water was invariable over time, suggesting that the springs receive a stable source of groundwater recharge and are not supported by relatively short groundwater flowpaths. The chemistry of springs in the low- and mid-elevations (2500 to 2900 masl) point towards a mix of recharge from the salar (4300 masl) and mountain-block recharge (MBR) in or above a queñuales forest ecosystem at ~4000 masl on the adjacent Pichu Pichu volcano. Springs at higher elevation closer to the salar and in a region with a high degree of faulting had higher chloride concentrations indicating higher proportions of interbasin groundwater flow from the salar. We conclude that while the salar is a closed basin, surface water from the salar recharges through the lacustrine sediments, mixes with mountain-block groundwater, and is incorporated into the regional groundwater flow system. Groundwater flow in the mountain block and the subsequent interbasin groundwater flow is accommodated through extensive faulting and fracturing. Our findings provide valuable information on the flowpaths and zones of recharge that support low-elevation springs in this arid region. In this study, high-elevation forests and a closed-basin salar are important sources of recharge. These features should be carefully managed to prevent impacts to the down-valley springs and streams.


1989 ◽  
Vol 14 (5) ◽  
pp. 467-604 ◽  
Author(s):  
A.Z. Devdariani ◽  
A.L. Zagrebin ◽  
K.B. Blagoev
Keyword(s):  

Larval growth and settlement rates are important larval behaviors for larval protections. The variability of larval growthsettlement rates and physical conditions for 2006-2012 and in the future with potential climate changes was studied using the coupling ROMS-IMBs, and new temperature and current indexes. Forty-four experimental cases were conducted for larval growth patterns and release mechanisms, showing the spatial, seasonal, annual, and climatic variations of larval growthsettlement rates and physical conditions, demonstrating that the slight different larval temperature-adaption and larval release strategies made difference in larval growth-settlement rates, and displaying that larval growth and settlement rates highly depended upon physical conditions and were vulnerable to climate changes.


Sign in / Sign up

Export Citation Format

Share Document