scholarly journals Comparing variability and trends in observed and modelled global-mean surface temperature

2010 ◽  
Vol 37 (16) ◽  
pp. n/a-n/a ◽  
Author(s):  
John C. Fyfe ◽  
Nathan P. Gillett ◽  
David W. J. Thompson
2021 ◽  
Author(s):  
Philip G. Sansom ◽  
Donald Cummins ◽  
Stefan Siegert ◽  
David B Stephenson

Abstract Quantifying the risk of global warming exceeding critical targets such as 2.0 ◦ C requires reliable projections of uncertainty as well as best estimates of Global Mean Surface Temperature (GMST). However, uncertainty bands on GMST projections are often calculated heuristically and have several potential shortcomings. In particular, the uncertainty bands shown in IPCC plume projections of GMST are based on the distribution of GMST anomalies from climate model runs and so are strongly determined by model characteristics with little influence from observations of the real-world. Physically motivated time-series approaches are proposed based on fitting energy balance models (EBMs) to climate model outputs and observations in order to constrain future projections. It is shown that EBMs fitted to one forcing scenario will not produce reliable projections when different forcing scenarios are applied. The errors in the EBM projections can be interpreted as arising due to a discrepancy in the effective forcing felt by the model. A simple time-series approach to correcting the projections is proposed based on learning the evolution of the forcing discrepancy so that it can be projected into the future. This approach gives reliable projections of GMST when tested in a perfect model setting. When applied to observations this leads to projected warming of 2.2 ◦ C (1.7 ◦ C to 2.9 ◦ C) in 2100 compared to pre-industrial conditions, 0.4 ◦ C lower than a comparable IPCC anomaly estimate. The probability of staying below the critical 2.0 ◦ C warming target in 2100 more than doubles to 0.28 compared to only 0.11 from a comparably IPCC estimate.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Darrell Kaufman ◽  
Nicholas McKay ◽  
Cody Routson ◽  
Michael Erb ◽  
Christoph Dätwyler ◽  
...  

2009 ◽  
Vol 22 (22) ◽  
pp. 6120-6141 ◽  
Author(s):  
David W. J. Thompson ◽  
John M. Wallace ◽  
Phil D. Jones ◽  
John J. Kennedy

Abstract Global-mean surface temperature is affected by both natural variability and anthropogenic forcing. This study is concerned with identifying and removing from global-mean temperatures the signatures of natural climate variability over the period January 1900–March 2009. A series of simple, physically based methodologies are developed and applied to isolate the climate impacts of three known sources of natural variability: the El Niño–Southern Oscillation (ENSO), variations in the advection of marine air masses over the high-latitude continents during winter, and aerosols injected into the stratosphere by explosive volcanic eruptions. After the effects of ENSO and high-latitude temperature advection are removed from the global-mean temperature record, the signatures of volcanic eruptions and changes in instrumentation become more clearly apparent. After the volcanic eruptions are subsequently filtered from the record, the residual time series reveals a nearly monotonic global warming pattern since ∼1950. The results also reveal coupling between the land and ocean areas on the interannual time scale that transcends the effects of ENSO and volcanic eruptions. Globally averaged land and ocean temperatures are most strongly correlated when ocean leads land by ∼2–3 months. These coupled fluctuations exhibit a complicated spatial signature with largest-amplitude sea surface temperature perturbations over the Atlantic Ocean.


Author(s):  
Masakazu Yoshimori ◽  
Masahiro Watanabe ◽  
Hideo Shiogama ◽  
Akira Oka ◽  
Ayako Abe-Ouchi ◽  
...  

2017 ◽  
Vol 30 (2) ◽  
pp. 595-608 ◽  
Author(s):  
Ping Huang

Anomalous rainfall in the tropical Pacific driven by El Niño–Southern Oscillation (ENSO) is a crucial pathway of ENSO’s global impacts. The changes in ENSO rainfall under global warming vary among the models, even though previous studies have shown that many models project that ENSO rainfall will likely intensify and shift eastward in response to global warming. The present study evaluates the robustness of the changes in ENSO rainfall in 32 CMIP5 models forced under the representative concentration pathway 8.5 (RCP8.5) scenario. The robust increase in mean-state moisture dominates the robust intensification of ENSO rainfall. The uncertain amplitude changes in ENSO-related SST variability are the largest source of the uncertainty in ENSO rainfall changes through influencing the amplitude changes in ENSO-driven circulation variability, whereas the structural changes in ENSO SST and ENSO circulation enhancement in the central Pacific are more robust than the amplitude changes. The spatial pattern of the mean-state SST changes—the departure of local SST changes from the tropical mean—with an El Niño–like pattern is a relatively robust factor, although it also contains pronounced intermodel differences. The intermodel spread of historical ENSO circulation is another noteworthy source of the uncertainty in ENSO rainfall changes. The intermodel standard deviation of ENSO rainfall changes increases along with the increase in global-mean surface temperature. However, the robustness of enhanced ENSO rainfall changes in the central-eastern Pacific is almost unchanged, whereas the eastward shift of ENSO rainfall is increasingly robust along with the increase in global-mean surface temperature.


Nature ◽  
2008 ◽  
Vol 453 (7195) ◽  
pp. 646-649 ◽  
Author(s):  
David W. J. Thompson ◽  
John J. Kennedy ◽  
John M. Wallace ◽  
Phil D. Jones

Sign in / Sign up

Export Citation Format

Share Document