temperature record
Recently Published Documents


TOTAL DOCUMENTS

391
(FIVE YEARS 94)

H-INDEX

47
(FIVE YEARS 3)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Deyanira Cisneros-Lazaro ◽  
Arthur Adams ◽  
Jinming Guo ◽  
Sylvain Bernard ◽  
Lukas P. Baumgartner ◽  
...  

AbstractOxygen isotope compositions of fossil foraminifera tests are commonly used proxies for ocean paleotemperatures, with reconstructions spanning the last 112 million years. However, the isotopic composition of these calcitic tests can be substantially altered during diagenesis without discernible textural changes. Here, we investigate fluid-mediated isotopic exchange in pristine tests of three modern benthic foraminifera species (Ammonia sp., Haynesina germanica, and Amphistegina lessonii) following immersion into an 18O-enriched artificial seawater at 90 °C for hours to days. Reacted tests remain texturally pristine but their bulk oxygen isotope compositions reveal rapid and species-dependent isotopic exchange with the water. NanoSIMS imaging reveals the 3-dimensional intra-test distributions of 18O-enrichment that correlates with test ultra-structure and associated organic matter. Image analysis is used to quantify species level differences in test ultrastructure, which explains the observed species-dependent rates of isotopic exchange. Consequently, even tests considered texturally pristine for paleo-climatic reconstruction purposes may have experienced substantial isotopic exchange; critical paleo-temperature record re-examination is warranted.


MAUSAM ◽  
2021 ◽  
Vol 65 (4) ◽  
pp. 585-590
Author(s):  
SUNILKUMAR PESHIN ◽  
DK CHAKRABORTY ◽  
SIDDHARTH SINGH

At present, climate change is a matter of great concern to mankind. This change, which is due to the manmade activities, is changing global temperature and the concentration of CO2 and O3 in the atmosphere. But there are some changes in the sun also. Solar changes could be assessed by solar flux at 10.7cm wavelength. Climate change could be assessed by long time temperature records. In this study we have examined whether solar change has any effect on climate change? We have analyzed two sets of data, 10.7cm solar flux (TSI) and global temperature record, along with total ozone, UV-B flux at ground and satellite data of total solar irradiance. Global temperature anomaly curve (GTAC) shows a slow increase of temperature up to about 1975 and a rapid rise after this year. Solar flux at 10.7cm wavelength shows a decreasing trend up to about 1970 and an increasing trend after this year. It also has 11 year cycle. GTAC, total ozone, UV-flux at ground and TSI also show 11 year cycle and some trend, but none of them matches the long-term trend found in solar flux at 10.7cm wavelength.


2021 ◽  
Author(s):  
Karsten Haustein

<p class="p1">The role of external (radiative) forcing factors and internal unforced (ocean) low-frequency variations in the instrumental global temperature record are still hotly debated. More recent findings point towards a larger contribution from changes in external forcing, but the jury is still out. While the estimation of the human-induced total global warming fraction since pre-industrial times is fairly robust and mostly independent of multidecadal internal variability, this is not necessarily the case for key regional features such as Arctic amplification or enhanced warming over continental land areas. Accounting for the slow global temperature adjustment after strong volcanic eruptions, the spatially heterogeneous nature of anthropogenic aerosol forcing and known biases in the sea surface temperature record, almost all of the multidecadal fluctuations observed over at least the last 160+ years can be explained without a relevant role for internal variability. Using a two-box response model framework, I will demonstrate that not only multidecadal variability is very likely a forced response, but warming trends over the past 40+ years are entirely attributable to human factors. Repercussions for amplifed European (or D-A-CH for that matter) warming and associated implications for extreme weather events are discussed. Further consideration is given to the communications aspect of such critical results as well as the question of wider societal impacts.</p>


2021 ◽  
Author(s):  
Jorge Sánchez-Sesma

Abstract. This work provides a hypothesis of the links between the multi-millennia scale recurrent solar and tidal influences and Earth's climate lagged responses, associated with the oceanic transport mechanisms with a variable modulation. As a part of this hypothesis, empirical and simple, non-linear lagged models are proposed for five of the most representative Earth's climate variables (a continental tropical temperature, an Antarctic temperature [at James Ross Island], the Greenland temperature, the global temperature and the southeast asian monsoon) with multi-millennia records to account for the lagged responses to solar forcing. The proposed models implicitely include a well-known oceanic heat transport mechanism: the Ocean Conveyor Belt. This oceanic mechanism appears to generate a climate modulation through the intensity of the ocean/atmosphere circulation, and a heat and mass transport, with a consequent climate lag of several thousands of years. Tidal forcing is also considered for global temperature modelling and forecast. The consequent millennia-scale global forecasts, after being integrated/verified with an accumulated ocean travelled distance from the tropical East Pacific, and with a double evaluation of the tidal influences based on similarities and on the NASA’s solar system astronomical dynamics, indicates a cooling for the next century, and gentle oscillations over the next millennia. Our preliminary results that strongly suggest that millennial scale changes in solar activity induce circulation and thermal global impacts, also suggest that the Younger Dryas event, may be influenced by the lagged outcomes of solar driven changes in the tropical Pacific, and by tidal influences. The detected Earth's climate delayed responses, that have been working in the past and present climates, and will be working in the future climates, must be, as soon as possible, independently verified and theoretically sustained, before to be fully included in a multi-scale climate models as a scientific theory. A final example for the global temperature record over the last 170 years demonstrates with experimental results for the twenty first century evolution the convenience of a multi-scale climate modelling with contrasting lower values compared with the IPCC global temperature scenarios.


2021 ◽  
Author(s):  
Katherine J. Dooley ◽  
Ciaran V. Kelly ◽  
Natascha Seifert ◽  
Therese A. Myslinski ◽  
Sophie C. O'Kelly ◽  
...  

Abstract. The highest currently recognised air temperature (33.3 °C) ever recorded in the Republic of Ireland was logged at Kilkenny Castle in 1887. The original observational record however no longer exists. Given that Ireland is now the only country in Europe to have a national heat record set in the 19th century, a reassessment of the verity of this record is both timely and valuable. The present analysis undertakes a fundamental reassessment of the plausibility of the 1887 temperature record using methods similar to those used to assess various weather extremes under WMO auspices over recent years. Specifically, we undertake an inter-station reassessment using sparse available records and make recourse to the new and improved 20CRv3 sparse-input reanalysis product. Neither surrounding available stations nor the reanalysis offer substantive support for the Kilkenny record of 33.3 °C being correct. Moreover, recent data rescue efforts have uncovered several earlier extreme values, one of which exceeds the Kilkenny value (33.5 °C on 16th July 1876 recorded at the Phoenix Park). However, the sparsity of early observational networks, a distinct lack of synoptic support from 20CRv3 for many of the extreme heat values, and the fact that these measurements were obtained using non-standard exposures leads us to conclude that there is grossly insufficient evidence to support any of these 19th Century extremes as robust national heat record candidates. Data from the early 20th Century onwards benefits from a denser network of stations undertaking measurements in a more standardised manner, many under the direct auspices of Met Éireann and its predecessors, adhering to WMO guidance and protocols. This enables more robust cross-checking of records. We argue that the Met Éireann recognised 20th Century heat record from Boora in 1976 verifies as the most plausible robust national temperature record based upon the synoptic situation and comparisons with nearby neighbouring stations. This measurement of 32.5 °C thus likely constitutes the highest reliably recorded temperature measurement in the Republic of Ireland. Ultimately, the formal decision on any reassessment and reassignment of the national record rests with the national meteorological service, Met Éireann.


2021 ◽  
pp. 1-55
Author(s):  
Paul B. Goddard ◽  
Clay R. Tabor ◽  
Tyler R. Jones

AbstractReconstructions of past West Antarctic Ice Sheet (WAIS) climate rely on the isotopologues of water recorded in ice cores which extend the local surface temperature record back tens of thousands of years. Here, we utilize continuous flow sampling and novel back-diffusion techniques with the WAIS Divide ice core (WDCobs) to construct a seasonal record of the δ18O value of the precipitation (δ18Op) at the time of deposition from 1980-2000. We then use a water isotope enabled global climate model, iCESM1, to establish seasonal drivers of WAIS climate and of δ18Op variability at the WAIS Divide location to compare with the WDCobs and MERRA2 reanalysis data. Our results show that the WAIS seasonal climate variability is driven by the position and strength of the Amundsen Sea Low (ASL) caused by variations in the Southern Annual Mode and the two Pacific-South American patterns (PSA1 and PSA2). The largest year-to-year seasonal δ18Op anomalies at the WAIS Divide location occur with respect to PSA2 during austral winter (JJA) as a result of an eastward displacement of the ASL that shifts the associated onshore winds towards the Weddell Sea, reducing temperatures and precipitation near the WAIS Divide location. Additionally, the iCESM1 experiment suggests that changes to the moisture path from the source to the WAIS Divide location is an important driver of seasonal WDCobs δ18Op variability. This work highlights the potential of using a single ice core to reconstruct past WAIS climate at seasonal timescales.


2021 ◽  
Author(s):  
Carolien M. H. van der Weijst ◽  
Koen J. van der Laan ◽  
Francien Peterse ◽  
Gert-Jan Reichart ◽  
Francesca Sangiorgi ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Naima El bani Altuna ◽  
Tine Lander Rasmussen ◽  
Mohamed Mahmoud Ezat ◽  
Sunil Vadakkepuliyambatta ◽  
Jeroen Groeneveld ◽  
...  

AbstractChanges in the Arctic climate-ocean system can rapidly impact carbon cycling and cryosphere. Methane release from the seafloor has been widespread in the Barents Sea since the last deglaciation, being closely linked to changes in pressure and bottom water temperature. Here, we present a post-glacial bottom water temperature record (18,000–0 years before present) based on Mg/Ca in benthic foraminifera from an area where methane seepage occurs and proximal to a former Arctic ice-sheet grounding zone. Coupled ice sheet-hydrate stability modeling shows that phases of extreme bottom water temperature up to 6 °C and associated with inflow of Atlantic Water repeatedly destabilized subsurface hydrates facilitating the release of greenhouse gasses from the seabed. Furthermore, these warming events played an important role in triggering multiple collapses of the marine-based Svalbard-Barents Sea Ice Sheet. Future warming of the Atlantic Water could lead to widespread disappearance of gas hydrates and melting of the remaining marine-terminating glaciers.


2021 ◽  
Author(s):  
Carolien M. H. van der Weijst ◽  
Koen J. van der Laan ◽  
Francien Peterse ◽  
Gert-Jan Reichart ◽  
Francesca Sangiorgi ◽  
...  

Abstract. TEX86 is a paleothermometer based on Thaumarcheotal glycerol dialkyl glycerol tetraether (GDGT) lipids and is one of the most frequently used proxies for sea-surface temperature (SST) in warmer-than-present climates. However, the calibration of TEX86 to SST is controversial because its correlation to SST is not significantly stronger than that to depth-integrated surface to subsurface temperatures. Because GDGTs are not exclusively produced in and exported from the surface ocean, sedimentary GDGTs may contain a depth-integrated signal that is sensitive to local subsurface temperature variability, which can only be proved in downcore studies. Here, we present a 15 Myr TEX86 record from ODP Site 959 in the Gulf of Guinea and use additional proxies to elucidate the source of the recorded TEX86 variability. Relatively high GDGT[2/3] ratio values from 13.6 Ma indicate that sedimentary GDGTs were partly sourced from deeper (> 200 m) waters. Moreover, late Pliocene TEX86 variability is highly sensitive to glacial-interglacial cyclicity, as is also recorded by benthic δ18O, while the variability within dinoflagellate assemblages and surface/thermocline temperature records (Uk’37 and Mg/Ca), is not primarily explained by glacial-interglacial cyclicity. Combined, these observations are best explained by TEX86 sensitivity to sub-thermocline temperature variability. We conclude that the TEX86 record represents a depth-integrated signal that incorporates a SST and a deeper component, which is compatible the present-day depth distribution of Thaumarchaeota and with the GDGT[2/3] distribution in core tops. The depth-integrated TEX86 record can potentially be used to infer SST variability, because subsurface temperature variability is generally tightly linked to SST variability. Using a subsurface calibration with peak calibration weight between 100–350 m, we estimate that east equatorial Atlantic SST cooled by ~4.5 °C between the Late Miocene and Pleistocene. On shorter timescales, we use the TEX86 record as an Antarctic Intermediate Water (AAIW) proxy and evaluate climatological leads and lags around the Pliocene M2 glacial (~3.3 Ma). Our record, combined with published information, suggests that the M2 glacial was marked by AAIW cooling during an austral summer insolation minimum, and that decreasing CO2 levels were a feedback, not the initiator, of glacial expansion.


Sign in / Sign up

Export Citation Format

Share Document