radiative perturbation
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 5)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Marius Bickel ◽  
Michael Ponater ◽  
Ulrike Burkhardt ◽  
Lisa Bock

<p lang="de-DE">Auch in aktuellen Bewertungsstudien wird angenommen, dass Kondensstreifen-Zirren den größten Beitrag zur Klimawirkung des Luftverkehrs liefern. Bisher wurde die Klimawirkung von Kondensstreifen allerdings fast ausschließlich anhand von Strahlungsantrieben bewertet. Dabei konnte bereits gezeigt werden, dass der seit einigen Jahren als Bewertungsmetrik empfohlene „Effektive Strahlungsantrieb“ in diesem Fall erheblich kleiner ausfällt als bisher verwendete klassische Strahlungsantriebe. Die zu erwartende Temperaturänderung am Boden sollte demnach ebenfalls deutlich schwächer ausgeprägt sein als bisher angenommen.</p> <p lang="de-DE">Hier präsentieren wir Ergebnisse von globalen Klimamodellsimulationen mit gekoppeltem Deckschichtozean zur Berechnung der tatsächlichen Bodentemperaturänderung aufgrund von Kondensstreifen-Zirren. Neben der Klimasensitivität wurde damit auch erstmalig die Klimawirkungseffizienz von Kondensstreifen-Zirren bestimmt. Insgesamt fällt die Bodenerwärmung durch Kondensstreifen-Zirren erheblich kleiner aus als für ein CO<sub>2</sub> Erhöhungsexperiment mit vergleichbar großem klassischen Strahlungsantrieb. Die Klimawirkungseffizienz, basierend auf dem Effektiven Strahlungsantrieb, beträgt nur ca. ein Viertel des erwarteten Wertes. Somit wird die durch den Effektiven Strahlungsantrieb nahegelegte reduzierte Wirkung von Kondensstreifen-Zirren auf die bodennahe Temperatur sogar noch unterboten.</p> <p lang="de-DE">Zur Bestimmung der physikalischen Ursachen der verringerten Temperaturwirksamkeit wurden sowohl die schnellen als auch die langsamen Strahlungsrückkopplungen mit Hilfe einer Rückkopplungsanalyse nach dem „partial radiative perturbation“ Verfahren bestimmt. In beiden Fällen war die reduzierte Klimasensitivität der Kondensstreifen-Zirren vor allem auf eine negative Wolkenrückkopplung, bedingt durch die Reduktion von natürlicher Zirrusbewölkung, zurückzuführen.</p>


2021 ◽  
Vol 21 (10) ◽  
pp. 7671-7694
Author(s):  
Sanhita Ghosh ◽  
Shubha Verma ◽  
Jayanarayanan Kuttippurath ◽  
Laurent Menut

Abstract. To reduce the uncertainty in climatic impacts induced by black carbon (BC) from global and regional aerosol–climate model simulations, it is a foremost requirement to improve the prediction of modelled BC distribution, specifically over the regions where the atmosphere is loaded with a large amount of BC, e.g. the Indo-Gangetic Plain (IGP) in the Indian subcontinent. Here we examine the wintertime direct radiative perturbation due to BC with an efficiently modelled BC distribution over the IGP in a high-resolution (0.1∘ × 0.1∘) chemical transport model, CHIMERE, implementing new BC emission inventories. The model efficiency in simulating the observed BC distribution was assessed by executing five simulations: Constrained and bottomup (bottomup includes Smog, Cmip, Edgar, and Pku). These simulations respectively implement the recently estimated India-based observationally constrained BC emissions (Constrainedemiss) and the latest bottom-up BC emissions (India-based: Smog-India; global: Coupled Model Intercomparison Project phase 6 – CMIP6, Emission Database for Global Atmospheric Research-V4 – EDGAR-V4, and Peking University BC Inventory – PKU). The mean BC emission flux from the five BC emission inventory databases was found to be considerably high (450–1000 kg km−2 yr−1) over most of the IGP, with this being the highest (> 2500 kg km−2 yr−1) over megacities (Kolkata and Delhi). A low estimated value of the normalised mean bias (NMB) and root mean square error (RMSE) from the Constrained estimated BC concentration (NMB: < 17 %) and aerosol optical depth due to BC (BC-AOD) (NMB: 11 %) indicated that simulations with Constrainedemiss BC emissions in CHIMERE could simulate the distribution of BC pollution over the IGP more efficiently than with bottom-up emissions. The high BC pollution covering the IGP region comprised a wintertime all-day (daytime) mean BC concentration and BC-AOD respectively in the range 14–25 µg m−3 (6–8 µg m−3) and 0.04–0.08 µg m−3 from the Constrained simulation. The simulated BC concentration and BC-AOD were inferred to be primarily sensitive to the change in BC emission strength over most of the IGP (including the megacity of Kolkata), but also to the transport of BC aerosols over megacity Delhi. Five main hotspot locations were identified in and around Delhi (northern IGP), Prayagraj–Allahabad–Varanasi (central IGP), Patna–Palamu (upper, lower, and mideastern IGP), and Kolkata (eastern IGP). The wintertime direct radiative perturbation due to BC aerosols from the Constrained simulation estimated the atmospheric radiative warming (+30 to +50 W m−2) to be about 50 %–70 % larger than the surface cooling. A widespread enhancement in atmospheric radiative warming due to BC by 2–3 times and a reduction in surface cooling by 10 %–20 %, with net warming at the top of the atmosphere (TOA) of 10–15 W m−2, were noticed compared to the atmosphere without BC, for which a net cooling at the TOA was exhibited. These perturbations were the strongest around megacities (Kolkata and Delhi), extended to the eastern coast, and were inferred to be 30 %–50% lower from the bottomup than the Constrained simulation.


2020 ◽  
Author(s):  
Sanhita Ghosh ◽  
Shubha Verma ◽  
Jayanarayanan Kuttippurath ◽  
Laurent Menut

Abstract. To reduce the uncertainty in the black carbon (BC) induced climatic impacts from the global and regional aerosol-climate model simulations, it is a foremost requirement to improve the prediction of modelled BC distribution. And that specifically, over the regions where the atmosphere is loaded with a large amount of BC, e.g., the Indo-Gangetic plain (IGP) in the Indian subcontinent. Here we present the wintertime radiative perturbation due to BC with an efficiently modelled BC distribution over the IGP in a high-resolution (0.1° × 0.1°) chemical transport model, CHIMERE, implementing new BC emission inventories. The model efficiency in simulating the observed BC distribution was examined executing five simulations: Constrained and bottomup (Smog, Cmip, Edgar, Pku) implementing respectively, the recently estimated India-based constrained BC emission and the latest bottom-up BC emissions (India-based: Smog-India, and global: Coupled Model Intercomparison Project phase 6 (CMIP6), Emission Database for Global Atmospheric Research-V4 (EDGAR-V4) and Peking University BC Inventory (PKU)). A low estimated value of the normalised mean bias (NMB) and root mean square error (RMSE) from Constrained estimated BC concentration (NMB: < 17 %) and aerosol optical depth due to BC (BC-AOD) (NMB: 11 %) indicated that simulation with constrained BC emissions in CHIMERE could simulate the distribution of BC pollution over the IGP more efficiently than with the bottom-up. The large BC pollution covering the IGP region comprised of wintertime all-day (daytime) monthly mean BC concentration and BC-AOD from the Constrained, respectively, in the range 14–25 (6–8) µg m−3 and 0.04–0.08, with a strong correlation between the variance in BC emission and simulated BC mass concentration or BC-AOD. Five main hotspot locations were identified in and around Delhi (northern-IGP), Prayagraj (or Allahabad)-Varanasi (central-IGP), Patna-Palamu (upper/lower mideastern-IGP), and Kolkata (eastern-IGP). The wintertime radiative perturbation due to BC aerosols from the Constrained included a wide-spread enhancement in atmospheric radiative warming by 2–3 times and a reduction in surface cooling by 10 %–20 %, with net warming at the top of atmosphere (TOA) of 10–15 W m−2, compared to the atmosphere without BC, for which, a net cooling at the TOA was, although, exhibited. These perturbations were spotted being the strongest around megacities (Kolkata and Delhi), and were inferred as 30 %–50 % lower from the bottomup than the Constrained.


2020 ◽  
Vol 33 (7) ◽  
pp. 2719-2739 ◽  
Author(s):  
Masakazu Yoshimori ◽  
F. Hugo Lambert ◽  
Mark J. Webb ◽  
Timothy Andrews

AbstractThe fixed anvil temperature (FAT) theory describes a mechanism for how tropical anvil clouds respond to global warming and has been used to argue for a robust positive longwave cloud feedback. A constant cloud anvil temperature, due to increased anvil altitude, has been argued to lead to a “zero cloud emission change” feedback, which can be considered positive relative to the negative feedback associated with cloud anvil warming when cloud altitude is unchanged. Here, partial radiative perturbation (PRP) analysis is used to quantify the radiative feedback caused by clouds that follow the FAT theory (FAT–cloud feedback) and to set this in the context of other feedback components in two atmospheric general circulation models. The FAT–cloud feedback is positive in the PRP framework due to increasing anvil altitude, but because the cloud emission does not change, this positive feedback is cancelled by an equal and opposite component of the temperature feedback due to increasing emission from the cloud. To incorporate this cancellation, the thermal radiative damping with fixed relative humidity and anvil temperature (T-FRAT) decomposition framework is proposed for longwave feedbacks, in which temperature, fixed relative humidity, and FAT–cloud feedbacks are combined. In T-FRAT, the cloud feedback under the FAT constraint is zero, while that under the proportionately higher anvil temperature (PHAT) constraint is negative. The change in the observable cloud radiative effect with FAT–cloud response is also evaluated and shown to be negative due to so-called cloud masking effects. It is shown that “cloud masking” is a misleading term in this context, and these effects are interpreted more generally as “cloud climatology effects.”


2019 ◽  
Vol 32 (22) ◽  
pp. 7629-7642 ◽  
Author(s):  
Gabriel Chiodo ◽  
Lorenzo M. Polvani

Abstract The quantification of the climate impacts exerted by stratospheric ozone changes in abrupt 4 × CO2 forcing experiments is an important step in assessing the role of the ozone layer in the climate system. Here, we build on our previous work on the change of the ozone layer under 4 × CO2 and examine the effects of ozone changes on the climate response to 4 × CO2, using the Whole Atmosphere Community Climate Model. We show that the global-mean radiative perturbation induced by the ozone changes under 4 × CO2 is small, due to nearly total cancellation between high and low latitudes, and between longwave and shortwave fluxes. Consistent with the small global-mean radiative perturbation, the effect of ozone changes on the global-mean surface temperature response to 4 × CO2 is negligible. However, changes in the ozone layer due to 4 × CO2 have a considerable impact on the tropospheric circulation. During boreal winter, we find significant ozone-induced tropospheric circulation responses in both hemispheres. In particular, ozone changes cause an equatorward shift of the North Atlantic jet, cooling over Eurasia, and drying over northern Europe. The ozone signals generally oppose the direct effects of increased CO2 levels and are robust across the range of ozone changes imposed in this study. Our results demonstrate that stratospheric ozone changes play a considerable role in shaping the atmospheric circulation response to CO2 forcing in both hemispheres and should be accounted for in climate sensitivity studies.


2018 ◽  
Vol 31 (24) ◽  
pp. 10039-10058 ◽  
Author(s):  
Tyler J. Thorsen ◽  
Seiji Kato ◽  
Norman G. Loeb ◽  
Fred G. Rose

The Clouds and the Earth’s Radiant Energy System (CERES)–partial radiative perturbation [PRP (CERES-PRP)] methodology applies partial-radiative-perturbation-like calculations to observational datasets to directly isolate the individual cloud, atmospheric, and surface property contributions to the variability of the radiation budget. The results of these calculations can further be used to construct radiative kernels. A suite of monthly mean observation-based inputs are used for the radiative transfer, including cloud properties from either the diurnally resolved passive-sensor-based CERES synoptic (SYN) data or the combination of the CloudSat cloud radar and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations ( CALIPSO) lidar. The CloudSat/ CALIPSO cloud profiles are incorporated via a clustering method that obtains monthly mean cloud properties suitable for accurate radiative transfer calculations. The computed fluxes are validated using the TOA fluxes observed by CERES. Applications of the CERES-PRP methodology are demonstrated by computing the individual contributions to the variability of the radiation budget over multiple years and by deriving water vapor radiative kernels. The calculations for the former are used to show that an approximately linear decomposition of the total flux anomalies is achieved. The observation-based water vapor kernels were used to investigate the accuracy of the GCM-based NCAR CAM3.0 water vapor kernel. Differences between our observation-based kernel and the NCAR one are marginally larger than those inferred by previous comparisons among different GCM kernels.


2018 ◽  
Vol 14 (11) ◽  
pp. 1565-1581 ◽  
Author(s):  
Rumi Ohgaito ◽  
Ayako Abe-Ouchi ◽  
Ryouta O'ishi ◽  
Toshihiko Takemura ◽  
Akinori Ito ◽  
...  

Abstract. The effect of aerosols is one of many uncertain factors in projections of future climate. However, the behaviour of mineral dust aerosols (dust) can be investigated within the context of past climate change. The Last Glacial Maximum (LGM) is known to have had enhanced dust deposition in comparison with the present, especially over polar regions. Using the Model for Interdisciplinary Research on Climate Earth System Model (MIROC-ESM), we conducted a standard LGM experiment following the protocol of the Paleoclimate Modelling Intercomparison Project phase 3 and sensitivity experiments. We imposed glaciogenic dust on the standard LGM experiment and investigated the impacts of glaciogenic dust and non-glaciogenic dust on the LGM climate. Global mean radiative perturbations by glaciogenic and non-glaciogenic dust were both negative, consistent with previous studies. However, glaciogenic dust behaved differently in specific regions; e.g. it resulted in less cooling over the polar regions. One of the major reasons for reduced cooling is the ageing of snow or ice, which results in albedo reduction via high dust deposition, especially near sources of high glaciogenic dust emission. Although the net radiative perturbations in the lee of high glaciogenic dust provenances are negative, warming by the ageing of snow overcomes this radiative perturbation in the Northern Hemisphere. In contrast, the radiative perturbation due to high dust loading in the troposphere acts to warm the surface in areas surrounding Antarctica, primarily via the longwave aerosol–cloud interaction of dust, and it is likely the result of the greenhouse effect attributable to the enhanced cloud fraction in the upper troposphere. Although our analysis focused mainly on the results of experiments using the atmospheric part of the MIROC-ESM, we also conducted full MIROC-ESM experiments for an initial examination of the effect of glaciogenic dust on the oceanic general circulation module. A long-term trend of enhanced warming was observed in the Northern Hemisphere with increased glaciogenic dust; however, the level of warming around Antarctica remained almost unchanged, even after extended coupling with the ocean.


2018 ◽  
Author(s):  
Rumi Ohgaito ◽  
Ayako Abe-Ouchi ◽  
Ryouta O'ishi ◽  
Toshihiko Takemura ◽  
Akinori Ito ◽  
...  

Abstract. The effect of aerosols is one of the many uncertain factors in projections of the future climate. However, the behaviour of mineral dust aerosol (dust) can be investigated in the context of past climate changes. The Last Glacial Maximum (LGM) is known to have resulted in an enhancement of the dust deposition, especially over the polar regions. Using the Model for Interdisciplinary Research on Climate Earth System Model (MIROC-ESM), we investigated the impact of glaciogenic dust on the climate of the LGM and found that the effect of the enhancement of dust results in less cooling over the polar regions. One of the major reasons of the reduced cooling is the ageing of snow or ice, resulting in the reduction of the albedo by a high dust deposition, especially in the vicinity of high glaciogenic dust emissions. Although the net radiative perturbations in the lee of high glaciogenic dust provenances are negative, warming by ageing of snow overcomes this radiative perturbation in the Northern Hemisphere. In contrast, the radiative perturbation by the high dust loading in the troposphere acts to warm the surface surrounding Antarctica, which is mainly caused by the longwave aerosol–cloud interaction of dust and is likely the result of the greenhouse effect of the enhanced cloud fraction in the upper troposphere. Although our analysis mainly focused on the results of the experiments using the atmospheric part of the MIROC-ESM, we also conducted full MIROC-ESM experiments for a first trial of glacial dust modelling. The long-term trend to enhance warming in the Northern Hemisphere with the increase of glaciogenic dust was observed, whereas the warming level around Antarctica is almost unchanged, even after an extended interaction with the ocean.


2013 ◽  
Vol 70 (12) ◽  
pp. 3940-3958 ◽  
Author(s):  
Alain Lahellec ◽  
Jean-Louis Dufresne

Abstract Climate sensitivity and feedback are key concepts if the complex behavior of climate response to perturbation is to be interpreted in a simple way. They have also become an essential tool for comparing global circulation models and assessing the reason for the spread in their results. The authors introduce a formal basic model to analyze the practical methods used to infer climate feedbacks and sensitivity from GCMs. The tangent linear model is used first to critically review the standard methods of feedback analyses that have been used in the GCM community for 40 years now. This leads the authors to distinguish between exclusive feedback analyses as in the partial radiative perturbation approach and inclusive analyses as in the “feedback suppression” methods. This review explains the hypotheses needed to apply these methods with confidence. Attention is paid to the more recent regression technique applied to the abrupt 2×CO2 experiment. A numerical evaluation of it is given, related to the Lyapunov analysis of the dynamical feature of the regression. It is applied to the Planck response, determined in its most strict definition within the GCM. In this approach, the Planck feedback becomes a dynamical feedback among others and, as such, also has a fast response differing from its steady-state profile.


Sign in / Sign up

Export Citation Format

Share Document