scholarly journals Using incoherent scatter radar to investigate the neutral wind long-term trend over Arecibo

2011 ◽  
Vol 116 (A2) ◽  
pp. n/a-n/a ◽  
Author(s):  
P. T. Santos ◽  
C. G. M. Brum ◽  
C. A. Tepley ◽  
N. Aponte ◽  
S. A. González ◽  
...  
2020 ◽  
Vol 6 (3) ◽  
pp. 33-39
Author(s):  
Artem Setov ◽  
Dmitriy Kushnarev ◽  
Roman Vasilyev ◽  
Andrey Medvedev

Irkutsk incoherent scatter radar (IISR) is an oblongish horn antenna that operates in a meter waveband (154–162 MHz), has a 0.5°×20° beam, and a frequency steering allowing us to tilt the beam by 30° to the south. Besides active measurements of ionospheric conditions and monitoring of space objects, the radar is regularly used for passive radio astronomical observations. From May to August, the Sun crosses the radar field of view and can be in the maximum of the radiation pattern for about two hours. The known shape of the radiation pattern and the high sensitivity of the receiver allow us to conduct calibrated measurements of the solar flux in solar flux units during this period. We have developed a new approach to the calibration, which can be applied to all IISR archival passive data. In the paper, we present long-term observations (2011–2019) of the solar flux in May and summer. We describe the measurement method, present daily average values of the solar flux for this period of passive measurements, and compare it with the solar activity F10.7 index and solar flux measurements made at the Australian observatory Learmonth at 245 MHz. We show that the daily average flux for the period of observations at a frequency of ~161 MHz generally has values from 5 to 10 sfu.


2020 ◽  
Vol 6 (3) ◽  
pp. 29-33
Author(s):  
Artem Setov ◽  
Dmitriy Kushnarev ◽  
Roman Vasilyev ◽  
Andrey Medvedev

Irkutsk incoherent scatter radar (IISR) is an oblongish horn antenna that operates in a meter waveband (154–162 MHz), has a 0.5°×20° beam, and a frequency steering allowing us to tilt the beam by 30° to the south. Besides active measurements of ionospheric conditions and monitoring of space objects, the radar is regularly used for passive radio astronomical observations. From May to August, the Sun crosses the radar field of view and can be in the maximum of the radiation pattern for about two hours. The known shape of the radiation pattern and the high sensitivity of the receiver allow us to conduct calibrated measurements of the solar flux in solar flux units during this period. We have developed a new approach to the calibration, which can be applied to all IISR archival passive data. In the paper, we present long-term observations (2011–2019) of the solar flux in May and summer. We describe the measurement method, present daily average values of the solar flux for this period of passive measurements, and compare it with the solar activity F10.7 index and solar flux measurements made at the Australian observatory Learmonth at 245 MHz. We show that the daily average flux for the period of observations at a frequency of ~161 MHz generally has values from 5 to 10 sfu.


2008 ◽  
Vol 26 (6) ◽  
pp. 1525-1537 ◽  
Author(s):  
S.-R. Zhang ◽  
J. M. Holt

Abstract. Long-term incoherent scatter radar (ISR) observations are used to study ionospheric variability for two midlatitude sites, Millstone Hill and St. Santin. This work is based on our prior efforts which resulted in an empirical model system, ISR Ionospheric Model (ISRIM), of climatology (and now variability) of the ionosphere. We assume that the variability can be expressed in three terms, the background, solar activity and geomagnetic activity components, each of which is a function of local time, season and height. So the background variability is ascribed mostly to the day-to-day variability arising from non solar and geomagnetic activity sources. (1) The background variability shows clear differences between the bottomside and the topside and changes with season. The Ne variability is low in the bottomside in summer, and high in the topside in winter and spring. The plasma temperature variability increases with height, and reaches a minimum in summer. Ti variability has a marked maximum in spring; at Millstone Hill it is twice as high as at St. Santin. (2) For enhanced solar activity conditions, the overall variability in Ne is reduced in the bottomside of the ionosphere and increases in the topside. For Te, the solar activity enhancement reduces the variability in seasons of high electron density (winter and equinox) at altitudes of high electron density (near the F2-peak). For Ti, however, while the variability tends to decrease at Millstone Hill (except for altitudes near 200 km), it increases at St. Santin for altitudes up to 350 km; the solar flux influence on the variability tends to be stronger at St. Santin than at Millstone Hill.


Sign in / Sign up

Export Citation Format

Share Document