Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska

Author(s):  
B. M. Jones ◽  
G. Grosse ◽  
C. D. Arp ◽  
M. C. Jones ◽  
K. M. Walter Anthony ◽  
...  
2012 ◽  
Vol 117 (G2) ◽  
pp. n/a-n/a ◽  
Author(s):  
Miriam C. Jones ◽  
Guido Grosse ◽  
Benjamin M. Jones ◽  
Katey Walter Anthony

2016 ◽  
Vol 44 (5) ◽  
pp. 456-463 ◽  
Author(s):  
Yuqing Miao ◽  
Changchun Song ◽  
Xianwei Wang ◽  
Henan Meng ◽  
Li Sun ◽  
...  

2017 ◽  
Vol 14 (14) ◽  
pp. 3561-3584 ◽  
Author(s):  
Tatiana V. Raudina ◽  
Sergey V. Loiko ◽  
Artyom G. Lim ◽  
Ivan V. Krickov ◽  
Liudmila S. Shirokova ◽  
...  

Abstract. Mobilization of dissolved organic carbon (DOC) and related trace elements (TEs) from the frozen peat to surface waters in the permafrost zone is expected to enhance under ongoing permafrost thaw and active layer thickness (ALT) deepening in high-latitude regions. The interstitial soil solutions are efficient tracers of ongoing bio-geochemical processes in the critical zone and can help to decipher the intensity of carbon and metals migration from the soil to the rivers and further to the ocean. To this end, we collected, across a 640 km latitudinal transect of the sporadic to continuous permafrost zone of western Siberia peatlands, soil porewaters from 30 cm depth using suction cups and we analyzed DOC, dissolved inorganic carbon (DIC), and 40 major elements and TEs in 0.45 µm filtered fraction of 80 soil porewaters. Despite an expected decrease in the intensity of DOC and TE mobilization from the soil and vegetation litter to the interstitial fluids with the increase in the permafrost coverage and a decrease in the annual temperature and ALT, the DOC and many major and trace elements did not exhibit any distinct decrease in concentration along the latitudinal transect from 62.2 to 67.4° N. The DOC demonstrated a maximum of concentration at 66° N, on the border of the discontinuous/continuous permafrost zone, whereas the DOC concentration in peat soil solutions from the continuous permafrost zone was equal to or higher than that in the sporadic/discontinuous permafrost zone. Moreover, a number of major (Ca, Mg) and trace (Al, Ti, Sr, Ga, rare earth elements (REEs), Zr, Hf, Th) elements exhibited an increasing, not decreasing, northward concentration trend. We hypothesize that the effects of temperature and thickness of the ALT are of secondary importance relative to the leaching capacity of peat, which is in turn controlled by the water saturation of the peat core. The water residence time in peat pores also plays a role in enriching the fluids in some elements: the DOC, V, Cu, Pb, REEs, and Th were a factor of 1.5 to 2.0 higher in mounds relative to hollows. As such, it is possible that the time of reaction between the peat and downward infiltrating waters essentially controls the degree of peat porewater enrichments in DOC and other solutes. A 2° northward shift in the position of the permafrost boundaries may bring about a factor of 1.3 ± 0.2 decrease in Ca, Mg, Sr, Al, Fe, Ti, Mn, Ni, Co, V, Zr, Hf, Th, and REE porewater concentration in continuous and discontinuous permafrost zones, and a possible decrease in DOC, specific ultraviolet absorbency (SUVA), Ca, Mg, Fe, and Sr will not exceed 20 % of their current values. The projected increase in ALT and vegetation density, northward migration of the permafrost boundary, or the change of hydrological regime is unlikely to modify chemical composition of peat porewater fluids larger than their natural variations within different micro-landscapes, i.e., within a factor of 2. The decrease in DOC and metal delivery to small rivers and lakes by peat soil leachate may also decrease the overall export of dissolved components from the continuous permafrost zone to the Arctic Ocean. This challenges the current paradigm on the increase in DOC export from the land to the ocean under climate warming in high latitudes.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Min Xu ◽  
Shichang Kang ◽  
Qiudong Zhao ◽  
Jiazhen Li

Changes in permafrost influence water balance exchanges in watersheds of cryosphere. Water storage change (WSC) is an important factor in water cycle. We used Gravity Recovery and Climate Experiment (GRACE) satellite data to retrieve WSC in the Three-River Source Region and subregions. WSC in four types of permafrost (continuous, seasonal, island, and patchy permafrost) was analyzed during 2003–2010. The result showed that WSC had significant change; it increased by9.06±0.01 mm/a (21.89±0.02×109 m3) over the Three-River Source Region during the study period. The most significant changes of WSC were in continuous permafrost zone, with a total amount of about13.94±0.48×109 m3. The spatial distribution of WSC was in state of gain in the continuous permafrost zone, whereas it was in a state of loss in the other permafrost zones. Little changes of precipitation and runoff occurred in study area, but the WSC increased significantly, according to water balance equation, the changes of runoff and water storage were subtracted from changes of precipitation, and the result showed that changes of evaporation is minus which means the evaporation decreased in the Three-River Source Region during 2003–2010.


2015 ◽  
Vol 12 (2) ◽  
pp. 1975-2019
Author(s):  
R. M. Manasypov ◽  
S. N. Vorobyev ◽  
S. V. Loiko ◽  
I. V. Kritzkov ◽  
L. S. Shirokova ◽  
...  

Abstract. Western Siberia's thermokarst (thaw) lakes extend over a territory spanning over a million km2; they are highly dynamic hydrochemical systems that receive chemical elements from the atmosphere and surrounding peat soil and vegetation, and exchange greenhouse gases with the atmosphere, delivering dissolved carbon and metals to adjacent hydrological systems. This work describes the chemical composition of ~ 130 thermokarst lakes of the size range from a few m2 to several km2, located in the discontinuous permafrost zone. Lakes were sampled during spring floods, just after the ice break (early June), the end of summer (August), the beginning of ice formation (October) and during the full freezing season in winter (February). Dissolved organic carbon (DOC) and the major and trace elements do not appreciably change their concentration with the lake size increase above 1000 m2 during all seasons. On the annual scale, the majority of dissolved elements including organic carbon increase their concentration from 30 to 500%, with a statistically significant (p < 0.05) trend from spring to winter. The maximal increase in trace element (TE) concentration occurred between spring and summer and autumn and winter. The ice formation in October included several stages: first, surface layer freezing followed by crack (fissure) formation with unfrozen water from the deeper layers spreading over the ice surface. This water was subsequently frozen and formed layered ice rich in organic matter. As a result, the DOC and metal concentrations were the highest at the beginning of the ice column and decreased from the surface to the depth. A number of elements demonstrated the accumulation, by more than a factor of 2, in the surface (0–20 cm) of the ice column relative to the rest of the ice core: Mn, Fe, Ni, Cu, Zn, As, Ba and Pb. The main consequences of discovered freeze-driven solute concentrations in thermokarst lake waters are enhanced colloidal coagulation and the removal of dissolved organic matter and associated insoluble metals from the water column to the sediments. The measured distribution coefficient of TE between amorphous organo-ferric coagulates and lake water (< 0.45 μm) were similar to those reported earlier for Fe-rich colloids and low molecular weight (< 1 kDa) fractions of thermokarst lake waters, suggesting massive co-precipitation of TE with amorphous Fe oxy(hydr)oxide stabilized by organic matter. Although the concentration of most elements is lowest in spring, this period of maximal water coverage of land creates a significant reservoir of DOC and soluble metals in the water column that can be easily mobilized to the hydrological network. The highest DOC concentration observed in the smallest (< 100 m2) water bodies in spring suggests their strongly heterotrophic status and, therefore, elevated CO2 flux from the lake surface to the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document