scholarly journals Searching for single domain magnetite in the “pseudo-single-domain” sedimentary haystack: Implications of biogenic magnetite preservation for sediment magnetism and relative paleointensity determinations

2012 ◽  
Vol 117 (B8) ◽  
pp. n/a-n/a ◽  
Author(s):  
Andrew P. Roberts ◽  
Liao Chang ◽  
David Heslop ◽  
Fabio Florindo ◽  
Juan C. Larrasoaña
Geosciences ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 400
Author(s):  
Yuho Kumagai ◽  
Norihiro Nakamura ◽  
Tetsuro Sato ◽  
Toshitaka Oka ◽  
Hirokuni Oda

Skeletons of hermatypic corals (e.g., Porites) might have enormous potential as a high-resolution paleomagnetic recorder owing to their rapid and continuous growth over hundreds of years at a rate of up to 2 cm/year, although typical corals show an extremely weak intensity of remanence and low stability. We found that coral tsunami boulders with negligible amounts of calcite on Ishigaki Island show a measurable intensity of remanence; thus, we attempted to characterize the magnetic assemblages in this coral skeleton to determine whether it is of biogenic or detrital magnetite using first-order reversal curve (FORC) measurements, ferromagnetic resonance (FMR) spectroscopy, and petrological observations through field-emission type scanning electron microscope (FE-SEM) with an acid treatment. The FMR derivative spectra of coral skeleton samples represent multiple derivative maxima and extended low-field absorption, indicating the presence of intact biogenic magnetite chains. FORC diagrams represent a “central ridge” signature with a vertical spread. These FMR and FORC features indicate the magnetization of these coral skeletons that are mainly created using intact biogenic magnetites and mixtures of grains from collapsed biogenic magnetites, pseudo-single domain grains, and multi-domain grains such as detrital magnetite. FE-SEM observations confirm the presence of a chain-like structure of iron oxides corresponding to the features of biogenic magnetite. Therefore, the magnetic mineral assemblage in coralline boulders from Ishigaki Island consists of dominant biogenic-origin single-domain magnetite and a trace amount of detrital component, indicating that fossil coral skeletons in Ishigaki Island have potential for utilization in paleomagnetic studies.


2013 ◽  
Vol 376 ◽  
pp. 99-109 ◽  
Author(s):  
J.E.T. Channell ◽  
D.A. Hodell ◽  
V. Margari ◽  
L.C. Skinner ◽  
P.C. Tzedakis ◽  
...  

1988 ◽  
Vol 140 (1) ◽  
pp. 51-63
Author(s):  
M. M. Walker ◽  
T. P. Quinn ◽  
J. L. Kirschvink ◽  
C. Groot

Although single-domain particles of biogenic magnetite have been found in different species of pelagic fishes, nothing is known about when it is synthesized, or about whether the time during life when it is produced is correlated with the development of responses to magnetic field stimuli. We have investigated production of biogenic magnetite suitable for use in magnetoreception in different life stages of the sockeye salmon, Oncorhynchus nerka (Walbaum). Sockeye salmon were chosen because responses in orientation arenas to magnetic field stimuli have been demonstrated in both fry and smolt stages of this species. We found significant quantities of single-domain magnetite in connective tissue from the ethmoid region of the skull of adult (4-year-old) sockeye salmon. The ontogenetic study revealed an orderly increase in the amount of magnetic material in the same region of the skull but not in other tissues of sockeye salmon fry, yearlings and smolts. The physical properties of this material closely matched those of magnetite particles extracted from the ethmoid tissue of the adult fish. We suggest that single-domain magnetite particles suitable for use in magnetoreception are produced throughout life in the ethmoid region of the skull in sockeye salmon. Based on theoretical calculations, we conclude that there are enough particles present in the skulls of the fry to mediate their responses to magnetic field direction. By the smolt stage, the amount of magnetite present in the front of the skull is sufficient to provide the fish with a magnetoreceptor capable of detecting small changes in the intensity of the geomagnetic field. Other tissues of the salmon, such as the eye and skin, often contained ferromagnetic material, although the magnetizations of these tissues were usually more variable than in the ethmoid tissue. These deposits of unidentified magnetic material, some of which may be magnetite, appear almost exclusively in adults and so would not be useful in magnetoreception by young fish. We suggest that tissue from within the ethmoid region of the skull in pelagic fishes is the only site yet identified where magnetite suitable for use in magnetoreception is concentrated.


Author(s):  
Stuart McKernan ◽  
C. Barry Carter

The determination of the absolute polarity of a polar material is often crucial to the understanding of the defects which occur in such materials. Several methods exist by which this determination may be performed. In bulk, single-domain specimens, macroscopic techniques may be used, such as the different etching behavior, using the appropriate etchant, of surfaces with opposite polarity. X-ray measurements under conditions where Friedel’s law (which means that the intensity of reflections from planes of opposite polarity are indistinguishable) breaks down can also be used to determine the absolute polarity of bulk, single-domain specimens. On the microscopic scale, and particularly where antiphase boundaries (APBs), which separate regions of opposite polarity exist, electron microscopic techniques must be employed. Two techniques are commonly practised; the first [1], involves the dynamical interaction of hoLz lines which interfere constructively or destructively with the zero order reflection, depending on the crystal polarity. The crystal polarity can therefore be directly deduced from the relative intensity of these interactions.


1998 ◽  
Vol 08 (PR2) ◽  
pp. Pr2-389-Pr2-392 ◽  
Author(s):  
A. Aharoni ◽  
J. P. Jakubovics
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document