scholarly journals Production of single-domain magnetite throughout life by sockeye salmon, Oncorhynchus nerka

1988 ◽  
Vol 140 (1) ◽  
pp. 51-63
Author(s):  
M. M. Walker ◽  
T. P. Quinn ◽  
J. L. Kirschvink ◽  
C. Groot

Although single-domain particles of biogenic magnetite have been found in different species of pelagic fishes, nothing is known about when it is synthesized, or about whether the time during life when it is produced is correlated with the development of responses to magnetic field stimuli. We have investigated production of biogenic magnetite suitable for use in magnetoreception in different life stages of the sockeye salmon, Oncorhynchus nerka (Walbaum). Sockeye salmon were chosen because responses in orientation arenas to magnetic field stimuli have been demonstrated in both fry and smolt stages of this species. We found significant quantities of single-domain magnetite in connective tissue from the ethmoid region of the skull of adult (4-year-old) sockeye salmon. The ontogenetic study revealed an orderly increase in the amount of magnetic material in the same region of the skull but not in other tissues of sockeye salmon fry, yearlings and smolts. The physical properties of this material closely matched those of magnetite particles extracted from the ethmoid tissue of the adult fish. We suggest that single-domain magnetite particles suitable for use in magnetoreception are produced throughout life in the ethmoid region of the skull in sockeye salmon. Based on theoretical calculations, we conclude that there are enough particles present in the skulls of the fry to mediate their responses to magnetic field direction. By the smolt stage, the amount of magnetite present in the front of the skull is sufficient to provide the fish with a magnetoreceptor capable of detecting small changes in the intensity of the geomagnetic field. Other tissues of the salmon, such as the eye and skin, often contained ferromagnetic material, although the magnetizations of these tissues were usually more variable than in the ethmoid tissue. These deposits of unidentified magnetic material, some of which may be magnetite, appear almost exclusively in adults and so would not be useful in magnetoreception by young fish. We suggest that tissue from within the ethmoid region of the skull in pelagic fishes is the only site yet identified where magnetite suitable for use in magnetoreception is concentrated.

2013 ◽  
Vol 739 ◽  
pp. 489-492
Author(s):  
Toempong Phetchakul ◽  
Prateep Taisettavatkul ◽  
Wittawat Yamwong ◽  
Amporn Poyai

The split-current magnetoresistor is proposed here. The structure likes the series magnetoresistor that one end split into two symmetrical terminals, so it is the magnetoresistor with three terminals. It uses the Hall effect current mode as magnetoresistor but the output is the differential current instead of resistance. It shows good linearity and can detect the magnetic field direction. The sensitivity in the differential current of width 100 μm and length 200 μm at 1 mA is 2.788x10-6 A/T constantly while the conventional one in the differential resistance is varied with magnetic field. It is made of silicon non magnetic material so it is compatible with the modern low-voltage current-mode integrated circuit.


1995 ◽  
Vol 198 (1) ◽  
pp. 141-146 ◽  
Author(s):  
R Beason ◽  
N Dussourd ◽  
M Deutschlander

The biophysical mechanism of vertebrate magnetic sensory perception has not been completely resolved. We here provide evidence for the use of a magnetic material (probably magnetite) by a vertebrate to detect the earth's magnetic field. The role of magnetite in bobolink (Dolichonyx oryzivorus) orientation was assessed by magnetizing the birds with a magnetic pulse in one of three orientations. Bobolinks magnetized with different polarities were significantly oriented in directions different from one another and from their controls. Treatment with a second pulse having the opposite polarity to the first resulted in random orientation for each group. These results indicate an effect specific to a particle-based magnetoreceptor. The use of magnetite particles for magnetoreception is not in conflict with other reports on the use of photopigments for this purpose. The two mechanisms could be used in a complementary manner for detecting the same or different aspects of the magnetic field.


1971 ◽  
Vol 1 (4) ◽  
pp. 511-521 ◽  
Author(s):  
John Whitney ◽  
H. P. Johnson ◽  
Shaul Levi ◽  
Bernard W. Evans

Rock-magnetic, paleomagnetic and petrologic properties of samples from the Laschamp and Olby basalt formations in France were studied to aid in determining the validity of the Laschamp geomagnetic field reversal reported by Bonhommet and Babkine. The Laschamp flow contains ilmenomagnetite, with partial alteration of the magnetite to hematite. Ilmenomagnetite in the Olby flow has largely recrystallized at high temperatures to a composite mozaic intergrowth of pseudobrookite, titanohematite and magnesioferrite, with rare residual magnetite and lamellae of ilmenite. The remanent magnetization is stable and resides primarily in single-domain magnetite particles. Our results indicate that the magnetizations of the Laschamp and Olby flows faithfully record the direction of the ambient magnetic field in which they cooled.


1998 ◽  
Vol 5 (3) ◽  
pp. 937-939 ◽  
Author(s):  
Nobuhiko Sakai ◽  
Hiroshi Ohkubo ◽  
Yasushi Nakamura

A 3 T superconducting magnet has been designed and constructed for magnetic Compton-profile (MCP) measurements with the new capabilities that the magnetic field direction can be altered quickly (within 5 s) and liquid-He refill is not required for more than one week. For the latter capability, two refrigerators have been directly attached to the cryostat to maintain the low temperature of the radiation shields and for the recondensation of liquid He. The system has been satisfactorily operated for over one week.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Evgeny D. Filippov ◽  
Sergey S. Makarov ◽  
Konstantin F. Burdonov ◽  
Weipeng Yao ◽  
Guilhem Revet ◽  
...  

AbstractWe analyze, using experiments and 3D MHD numerical simulations, the dynamic and radiative properties of a plasma ablated by a laser (1 ns, 10$$^{12}$$ 12 –10$$^{13}$$ 13 W/cm$$^2$$ 2 ) from a solid target as it expands into a homogeneous, strong magnetic field (up to 30 T) that is transverse to its main expansion axis. We find that as early as 2 ns after the start of the expansion, the plasma becomes constrained by the magnetic field. As the magnetic field strength is increased, more plasma is confined close to the target and is heated by magnetic compression. We also observe that after $$\sim 8$$ ∼ 8  ns, the plasma is being overall shaped in a slab, with the plasma being compressed perpendicularly to the magnetic field, and being extended along the magnetic field direction. This dense slab rapidly expands into vacuum; however, it contains only $$\sim 2\%$$ ∼ 2 % of the total plasma. As a result of the higher density and increased heating of the plasma confined against the laser-irradiated solid target, there is a net enhancement of the total X-ray emissivity induced by the magnetization.


Author(s):  
Thomas P. Quinn ◽  
George R. Pess ◽  
Ben J.G. Sutherland ◽  
Samuel J. Brenkman ◽  
Ruth E. Withler ◽  
...  

2014 ◽  
Vol 11 (99) ◽  
pp. 20140542 ◽  
Author(s):  
Nathan F. Putman ◽  
Erica S. Jenkins ◽  
Catherine G. J. Michielsens ◽  
David L. G. Noakes

Animals navigate using a variety of sensory cues, but how each is weighted during different phases of movement (e.g. dispersal, foraging, homing) is controversial. Here, we examine the geomagnetic and olfactory imprinting hypotheses of natal homing with datasets that recorded variation in the migratory routes of sockeye ( Oncorhynchus nerka ) and pink ( Oncorhynchus gorbuscha ) salmon returning from the Pacific Ocean to the Fraser River, British Columbia. Drift of the magnetic field (i.e. geomagnetic imprinting) uniquely accounted for 23.2% and 44.0% of the variation in migration routes for sockeye and pink salmon, respectively. Ocean circulation (i.e. olfactory imprinting) predicted 6.1% and 0.1% of the variation in sockeye and pink migration routes, respectively. Sea surface temperature (a variable influencing salmon distribution but not navigation, directly) accounted for 13.0% of the variation in sockeye migration but was unrelated to pink migration. These findings suggest that geomagnetic navigation plays an important role in long-distance homing in salmon and that consideration of navigation mechanisms can aid in the management of migratory fishes by better predicting movement patterns. Finally, given the diversity of animals that use the Earth's magnetic field for navigation, geomagnetic drift may provide a unifying explanation for spatio-temporal variation in the movement patterns of many species.


1987 ◽  
Vol 44 (9) ◽  
pp. 1551-1561 ◽  
Author(s):  
Jeremy S. Collie ◽  
Carl J. Walters

Despite evidence of depensatory interactions among year-classes of Adams River sockeye salmon (Oncorhynchus nerka), the best management policy is one of equal escapement for all year-classes. We fit alternative models (Ricker model and Larkin model) to 32 yr of stock–recruitment data and checked, using simulation tests, that the significant interaction terms in the Larkin model are not caused by biases in estimating the parameters. We identified a parameter set (Rationalizer model) for which the status quo cyclic escapement policy is optimal, but this set fits the observed data very poorly. Thus it is quite unlikely that the Rationalizer model is correct or that the status quo escapement policy is optimal. Using the fitted stock–recruitment parameters, we simulated the sockeye population under several management policies. The escapement policy optimal under the Ricker model is best overall because of the high yields if it should be correct. If the three stock–recruitment models are equally likely to be correct, the simulations predict that adopting a constant-escapement policy would increase long-term yield 30% over the current policy and that an additional 15% increase in yield could be obtained if the policy were actively adaptive.


2017 ◽  
Vol 91 (1) ◽  
pp. 41-57 ◽  
Author(s):  
S. C. Godwin ◽  
L. M. Dill ◽  
M. Krkošek ◽  
M. H. H. Price ◽  
J. D. Reynolds

Sign in / Sign up

Export Citation Format

Share Document