Convective instability in sedimentation: Linear stability analysis

2013 ◽  
Vol 118 (1) ◽  
pp. 256-272 ◽  
Author(s):  
Xiao Yu ◽  
Tian-Jian Hsu ◽  
S. Balachandar
2018 ◽  
Vol 843 ◽  
pp. 575-600 ◽  
Author(s):  
Jean-Philippe Matas ◽  
Antoine Delon ◽  
Alain Cartellier

We study the destabilization of a round liquid jet by a fast annular gas stream. We measure the frequency of the shear instability waves for several geometries and air/water velocities. We then carry out a linear stability analysis, and show that there are three competing mechanisms for the destabilization: a convective instability, an absolute instability driven by surface tension and an absolute instability driven by confinement. We compare the predictions of this analysis with experimental results, and propose scaling laws for wave frequency in each regime. We finally introduce criteria to predict the boundaries between these three regimes.


1998 ◽  
Vol 9 (5) ◽  
pp. 507-525 ◽  
Author(s):  
V. A. VOLPERT ◽  
A. I. VOLPERT

The paper is devoted to convective instability of reaction fronts. New approaches are developed to study some eigenvalue problems arising in chemical hydrodynamics. For gaseous combustion in the case of equality of transport coefficients, a linear stability analysis of an upward propagating front is carried out. A minimax representation of the stability boundary is obtained.


Author(s):  
Xavier Nicolas ◽  
Shihe Xin ◽  
Noussaiba Zoueidi

The aim of the present paper is to characterize a secondary convective instability of Poiseuille-Rayleigh-Be´nard (PRB) mixed convection flows in air that takes the shape of wavy thermoconvective rolls, for 70≤Re≤300 and 3000<Ra<15000. At first, the linear stability analysis by Clever and Busse [JFM, 1991] in the case of PRB flows between two infinite plates is extended to the case of confined channels with a 10 transversal aspect ratio. In the second part, using 3D non linear direct numerical simulations, the space and time development of the chaotic wavy rolls obtained by maintaining a permanent random excitation at channel inlet is analyzed. As the perturbation is designed to cover all the modes, it is possible to detect the modes that are naturally amplified by the flow and those that are damped. It is shown that the wavy roll characteristics obtained in this way vary a lot with Ra increasing and stabilize for Ra>3Ra*. Comparisons with the experiments by Pabiou et al. [JFM, 2005] are proposed.


2008 ◽  
Vol 612 ◽  
pp. 1-19 ◽  
Author(s):  
P. A. LAKSHMI NARAYANA ◽  
P. V. S. N. MURTHY ◽  
RAMA SUBBA REDDY GORLA

The stability of Soret-driven thermosolutal convection in a shallow horizontal layer of a porous medium subjected to inclined thermal and solutal gradients of finite magnitude is investigated theoretically by means of a linear stability analysis. The horizontal components of these gradients induce a Hadley circulation, which becomes unstable when vertical components are sufficiently large. We employed a two-term Galerkin approximation for various modes of instability. The effect of the Soret parameter on the mechanism of instability of the thermosolutal convection is investigated. Results are presented for various values of the governing parameters of the flow. It is observed that the Soret parameter has a significant effect on convective instability and this is discussed.


Sign in / Sign up

Export Citation Format

Share Document