scholarly journals Drifting Floats Reveal Nitrate Patterns in Mediterranean Sea

Eos ◽  
2016 ◽  
Vol 97 ◽  
Author(s):  
Kate Wheeling

Next-generation autonomous platforms allow scientists to understand physical mechanisms that control nitrate availability in the Mediterranean surface water.

2014 ◽  
Vol 27 (1) ◽  
pp. 442-447 ◽  
Author(s):  
N. Pinardi ◽  
A. Bonaduce ◽  
A. Navarra ◽  
S. Dobricic ◽  
P. Oddo

Abstract A formalism to obtain a mean sea level equation (MSLE) is constructed for any limited ocean region and/or the global ocean by considering the mass conservation equation with compressible effects and a linear equation of state. The MSLE contains buoyancy fluxes terms representing the steric effects and the mass flux is represented by surface water fluxes and volume transport terms. The MSLE is studied for the Mediterranean Sea case using a simulation experiment for the decade 1999–2008. It is found that the Mediterranean MSL tendency is made of a steric contribution that is almost periodic in time superimposed on a stochastic-like signal due to the mass balance, dominating the MSL tendency. The MSL tendency stochastic-like term is a result of the imbalance between the volume flux at Gibraltar and the area average surface water flux.


2013 ◽  
Vol 10 (5) ◽  
pp. 2973-2991 ◽  
Author(s):  
V. Giovagnetti ◽  
C. Brunet ◽  
F. Conversano ◽  
F. Tramontano ◽  
I. Obernosterer ◽  
...  

Abstract. In this study, we investigate the response of the phytoplankton community, with emphasis on ecophysiology and succession, after two experimental additions of Saharan dust in the surface water layer of a low-nutrient low-chlorophyll ecosystem in the Mediterranean Sea. Three mesocosms were amended with evapocondensed dust to simulate realistic Saharan dust events, while three additional mesocosms were kept unamended and served as controls. The experiment consisted in two consecutive dust additions and samples were daily collected at different depths (−0.1, −5 and −10 m) during one week, starting before each addition occurred. Data concerning HPLC pigment analysis on two size classes (< 3 and > 3 μm), electron transport rate (ETR) vs. irradiance curves, non-photochemical fluorescence quenching (NPQ) and phytoplankton cell abundance (measured by flow cytometry), are presented and discussed in this paper. Results show that picophytoplankton mainly respond to the first dust addition, while the second addition leads to an increase of both pico- and nano-/microphytoplankton. Ecophysiological changes in the phytoplankton community occur, with NPQ and pigment concentration per cell increasing after dust additions. While biomass increases after pulses of new nutrients, ETR does not greatly vary between dust-amended and control conditions, in relation with ecophysiological changes within the phytoplankton community, such as the increase in NPQ and pigment cellular concentration. A quantitative assessment and parameterisation of the onset of a phytoplankton bloom in a nutrient-limited ecosystem is attempted on the basis of the increase in phytoplankton biomass observed during the experiment. The results of this study are discussed focusing on the adaptation of picophytoplankton to nutrient limitation in the surface water layer, as well as on size-dependent competition ability in phytoplankton.


2015 ◽  
Vol 41 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Ghada F. El-Said ◽  
Manal M. El-Sadaawy ◽  
Abeer A. Moneer ◽  
Nayrah A. Shaltout

2022 ◽  
Vol 8 ◽  
Author(s):  
Cosimo Solidoro ◽  
Gianpiero Cossarini ◽  
Paolo Lazzari ◽  
Giovanni Galli ◽  
Giorgio Bolzon ◽  
...  

We simulate and analyze the effects of a high CO2 emission scenario on the Mediterranean Sea biogeochemical state at the end of the XXI century, with a focus on carbon cycling, budgets and fluxes, within and between the Mediterranean sub-basins, and on ocean acidification. As a result of the overall warming of surface water and exchanges at the boundaries, the model results project an increment in both the plankton primary production and the system total respiration. However, productivity increases less than respiration, so these changes yield to a decreament in the concentrations of total living carbon, chlorophyll, particulate organic carbon and oxygen in the epipelagic layer, and to an increment in the DIC pool all over the basin. In terms of mass budgets, the large increment in the dissolution of atmospheric CO2 results in an increment of most carbon fluxes, including the horizontal exchanges between eastern and western sub-basins, in a reduction of the organic carbon component, and in an increament of the inorganic one. The eastern sub-basin accumulates more than 85% of the absorbed atmospheric CO2. A clear ocean acidification signal is observed all over the basin, quantitatively similar to those projected in most oceans, and well detectable also down to the mesopelagic and bathypelagic layers.


2015 ◽  
Vol 116 (1) ◽  
pp. 69-74 ◽  
Author(s):  
L Pérez ◽  
ML Abarca ◽  
F Latif-Eugenín ◽  
R Beaz-Hidalgo ◽  
MJ Figueras ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document