scholarly journals Turbulent Mixing in a Far-Field Plume During the Transition to Upwelling Conditions: Microstructure Observations From an AUV

2018 ◽  
Vol 45 (18) ◽  
pp. 9765-9773
Author(s):  
Alexander W. Fisher ◽  
Nicholas J. Nidzieko ◽  
Malcolm E. Scully ◽  
Robert J. Chant ◽  
Elias J. Hunter ◽  
...  
Keyword(s):  
Author(s):  
Pankaj Rajput ◽  
Sunil Kumar

The main aim of this investigation is to analyze directional noise reduction resulting from asymmetric high momentum fluidic injection downstream of a Mach 0.9 nozzle. Jet noise has been identified as one of the primary obstacles to increasing commercial aviation capacity. Microjets in cross flow are known to enhance turbulent mixing in the shear layer due to the induced stream-wise vortices. This enhanced mixing can be used for reorganizing the spatial distribution of acoustic energy. Targeted reduction in the downward-emitted turbulent mixing noise can be achieved by strategically injecting high momentum fluid downstream of the jet exhaust. Detailed Large Eddy Simulations were performed on a hybrid block structured-unstructured mesh to generate the flow field which was then used for near field and far field noise computation. Aeroacoustic analogy based formulation was used for computing far-field noise estimation. Benchmark cases were validated with preexisting experimental data sets. Mean flow measurements suggest shorter jet core lengths due to the enhanced mixing resulting from fluidic injection. The induced asymmetry due to the fluidic injection gives rise to an asymmetric acoustic field leading to targeted directional noise reduction in the far field as measured by pressure probes.


2014 ◽  
Vol 26 (12) ◽  
pp. 125106 ◽  
Author(s):  
O. R. H. Buxton ◽  
B. Ganapathisubramani

Author(s):  
N. Bonnet ◽  
M. Troyon ◽  
P. Gallion

Two main problems in high resolution electron microscopy are first, the existence of gaps in the transfer function, and then the difficulty to find complex amplitude of the diffracted wawe from registered intensity. The solution of this second problem is in most cases only intended by the realization of several micrographs in different conditions (defocusing distance, illuminating angle, complementary objective apertures…) which can lead to severe problems of contamination or radiation damage for certain specimens.Fraunhofer holography can in principle solve both problems stated above (1,2). The microscope objective is strongly defocused (far-field region) so that the two diffracted beams do not interfere. The ideal transfer function after reconstruction is then unity and the twin image do not overlap on the reconstructed one.We show some applications of the method and results of preliminary tests.Possible application to the study of cavitiesSmall voids (or gas-filled bubbles) created by irradiation in crystalline materials can be observed near the Scherzer focus, but it is then difficult to extract other informations than the approximated size.


1994 ◽  
Vol 32 (1) ◽  
pp. 67-86 ◽  
Author(s):  
R. I. Nokes ◽  
G. O. Hughes

Sign in / Sign up

Export Citation Format

Share Document