scholarly journals Quantifying the Role of Oceanic Feedbacks on ENSO Asymmetry

2019 ◽  
Vol 46 (4) ◽  
pp. 2140-2148 ◽  
Author(s):  
Cong Guan ◽  
Michael J. McPhaden ◽  
Fan Wang ◽  
Shijian Hu
Keyword(s):  
2012 ◽  
Vol 25 (9) ◽  
pp. 3321-3335 ◽  
Author(s):  
Masamichi Ohba ◽  
Masahiro Watanabe

Warm and cold phases of El Niño–Southern Oscillation (ENSO) exhibit a significant asymmetry in their transition/duration such that El Niño tends to shift rapidly to La Niña after the mature phase, whereas La Niña tends to persist for up to 2 yr. The possible role of sea surface temperature (SST) anomalies in the Indian Ocean (IO) in this ENSO asymmetry is investigated using a coupled general circulation model (CGCM). Decoupled-IO experiments are conducted to assess asymmetric IO feedbacks to the ongoing ENSO evolution in the Pacific. Identical-twin forecast experiments show that a coupling of the IO extends the skillful prediction of the ENSO warm phase by about one year, which was about 8 months in the absence of the IO coupling, in which a significant drop of the prediction skill around the boreal spring (known as the spring prediction barrier) is found. The effect of IO coupling on the predictability of the Pacific SST is significantly weaker in the decay phase of La Niña. Warm IO SST anomalies associated with El Niño enhance surface easterlies over the equatorial western Pacific and hence facilitate the El Niño decay. However, this mechanism cannot be applied to cold IO SST anomalies during La Niña. The result of these CGCM experiments estimates that approximately one-half of the ENSO asymmetry arises from the phase-dependent nature of the Indo-Pacific interbasin coupling.


2009 ◽  
Vol 22 (22) ◽  
pp. 5933-5961 ◽  
Author(s):  
Tao Zhang ◽  
De-Zheng Sun ◽  
Richard Neale ◽  
Philip J. Rasch

Abstract The asymmetry between El Niño and La Niña is a key aspect of ENSO that needs to be simulated well by models in order to fully capture the role of ENSO in the climate system. Here the asymmetry between the two phases of ENSO in five successive versions of the Community Climate System Model (CCSM1, CCSM2, CCSM3 at T42 resolution, CCSM3 at T85 resolution, and the latest CCSM3 + NR, with the Neale and Richter convection scheme) is evaluated. Different from the previous studies, not only is the surface signature of ENSO asymmetry examined, but so too is its subsurface signature. By comparing the differences among these models as well as the differences between the models and the observations, an understanding of the causes of the ENSO asymmetry is sought. An underestimate of the ENSO asymmetry is noted in all of the models, but the latest version with the Neale and Richter scheme (CCSM3 + NR) is getting closer to the observations than the earlier versions. The net surface heat flux is found to damp the asymmetry in the SST field in both the models and observations, but the damping effect in the models is weaker than that in the observations, thus excluding a role of the surface heat flux in contributing to the weaker asymmetry in the SST anomalies associated with ENSO. Examining the subsurface signatures of ENSO—the thermocline depth and the associated subsurface temperature for the western and eastern Pacific—reveals the same bias; that is, the asymmetry in the models is weaker than that in the observations. The analysis of the corresponding Atmospheric Model Intercomparison Project (AMIP) runs in conjunction with the coupled runs suggests that the weaker asymmetry in the subsurface signatures in the models is related to the lack of asymmetry in the zonal wind stress over the central Pacific, which in turn is due to a lack of sufficient asymmetry in deep convection (i.e., the nonlinear dependence of the deep convection on SST). In particular, the lack of a westward shift in the deep convection in the models in response to a cold phase SST anomaly is found as a common factor that is responsible for the weak asymmetry in the models. It is also suggested that a more eastward extension of the deep convection in response to a warm phase SST anomaly may also help to increase the asymmetry of ENSO. The better performance of CCSM3 + NR is apparently linked to an enhanced convection over the eastern Pacific during the warm phase of ENSO. Apparently, either a westward shift of deep convection in response to a cold phase SST anomaly or an increase of convection over the eastern Pacific in response to a warm phase SST anomaly leads to an increase in the asymmetry of zonal wind stress and therefore an increase in the asymmetry of subsurface signal, favoring an increase in ENSO asymmetry.


JAMA ◽  
1966 ◽  
Vol 195 (12) ◽  
pp. 1005-1009 ◽  
Author(s):  
D. J. Fernbach
Keyword(s):  

JAMA ◽  
1966 ◽  
Vol 195 (3) ◽  
pp. 167-172 ◽  
Author(s):  
T. E. Van Metre

2018 ◽  
Vol 41 ◽  
Author(s):  
Winnifred R. Louis ◽  
Craig McGarty ◽  
Emma F. Thomas ◽  
Catherine E. Amiot ◽  
Fathali M. Moghaddam

AbstractWhitehouse adapts insights from evolutionary anthropology to interpret extreme self-sacrifice through the concept of identity fusion. The model neglects the role of normative systems in shaping behaviors, especially in relation to violent extremism. In peaceful groups, increasing fusion will actually decrease extremism. Groups collectively appraise threats and opportunities, actively debate action options, and rarely choose violence toward self or others.


2018 ◽  
Vol 41 ◽  
Author(s):  
Kevin Arceneaux

AbstractIntuitions guide decision-making, and looking to the evolutionary history of humans illuminates why some behavioral responses are more intuitive than others. Yet a place remains for cognitive processes to second-guess intuitive responses – that is, to be reflective – and individual differences abound in automatic, intuitive processing as well.


2020 ◽  
Vol 43 ◽  
Author(s):  
Stefen Beeler-Duden ◽  
Meltem Yucel ◽  
Amrisha Vaish

Abstract Tomasello offers a compelling account of the emergence of humans’ sense of obligation. We suggest that more needs to be said about the role of affect in the creation of obligations. We also argue that positive emotions such as gratitude evolved to encourage individuals to fulfill cooperative obligations without the negative quality that Tomasello proposes is inherent in obligations.


2020 ◽  
Vol 43 ◽  
Author(s):  
Andrew Whiten

Abstract The authors do the field of cultural evolution a service by exploring the role of non-social cognition in human cumulative technological culture, truly neglected in comparison with socio-cognitive abilities frequently assumed to be the primary drivers. Some specifics of their delineation of the critical factors are problematic, however. I highlight recent chimpanzee–human comparative findings that should help refine such analyses.


2020 ◽  
Vol 43 ◽  
Author(s):  
Thomas Parr

Abstract This commentary focuses upon the relationship between two themes in the target article: the ways in which a Markov blanket may be defined and the role of precision and salience in mediating the interactions between what is internal and external to a system. These each rest upon the different perspectives we might take while “choosing” a Markov blanket.


2000 ◽  
Vol 179 ◽  
pp. 387-388
Author(s):  
Gaetano Belvedere ◽  
V. V. Pipin ◽  
G. Rüdiger

Extended AbstractRecent numerical simulations lead to the result that turbulence is much more magnetically driven than believed. In particular the role ofmagnetic buoyancyappears quite important for the generation ofα-effect and angular momentum transport (Brandenburg & Schmitt 1998). We present results obtained for a turbulence field driven by a (given) Lorentz force in a non-stratified but rotating convection zone. The main result confirms the numerical findings of Brandenburg & Schmitt that in the northern hemisphere theα-effect and the kinetic helicityℋkin= 〈u′ · rotu′〉 are positive (and negative in the northern hemisphere), this being just opposite to what occurs for the current helicityℋcurr= 〈j′ ·B′〉, which is negative in the northern hemisphere (and positive in the southern hemisphere). There has been an increasing number of papers presenting observations of current helicity at the solar surface, all showing that it isnegativein the northern hemisphere and positive in the southern hemisphere (see Rüdigeret al. 2000, also for a review).


Sign in / Sign up

Export Citation Format

Share Document