magnetic buoyancy
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 9)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 922 (2) ◽  
pp. 195
Author(s):  
D. W. Hughes ◽  
N. H. Brummell

Abstract Double-diffusive systems, such as thermosolutal convection, in which the density depends on two components that diffuse at different rates, are prone to both steady and oscillatory instabilities. Such systems can evolve into layered states, in which both components, and also the density, adopt a “staircase” profile. Turbulent transport is enhanced significantly in the layered state. Here we exploit an analogy between magnetic buoyancy and thermosolutal convection in order to demonstrate the phenomenon of magnetic layering. We examine the long-term nonlinear evolution of a vertically stratified horizontal magnetic field in the so-called “diffusive regime,” where an oscillatory linear instability operates. Motivated astrophysically, we consider the case where the viscous and magnetic diffusivities are much smaller than the thermal diffusivity. We demonstrate that diffusive layering can occur even for subadiabatic temperature gradients. Magnetic layering may be relevant for stellar radiative zones, with implications for the turbulent transport of heat, magnetic field, and chemical elements.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 239
Author(s):  
Diego Vescovi ◽  
René Reifarth

Current AGB stellar models provide an adequate description of the s-process nucleosynthesis that occurs. Nonetheless, they still suffer from many uncertainties related to the modeling of the 13C pocket formation and the adopted nuclear reaction rates. For many important s-process isotopes, a best set of neutron-capture cross sections was recently re-evaluated. Using stellar models prescribing that the 13C pocket is a by-product of magnetic-buoyancy-induced mixing phenomena, s-process calculations were carried out with this database. Significant effects are found for a few s-only and branching point isotopes, pointing out the need for improved neutron-capture cross section measurements at low energy.


Author(s):  
D. Vescovi ◽  
S. Cristallo ◽  
S. Palmerini ◽  
C. Abia ◽  
M. Busso
Keyword(s):  

2020 ◽  
Vol 897 (2) ◽  
pp. L25
Author(s):  
Diego Vescovi ◽  
Sergio Cristallo ◽  
Maurizio Busso ◽  
Nan Liu
Keyword(s):  

Author(s):  
V. Krivodubskij

Cyclic regeneration of the large-scale magnetic field of the Sun underlies all the phenomena known collectively as “solar activity”. The sunspot cycle is arguably the best known manifestation of the solar magnetic cycle. We outlined here the scenario of reconstructing of toroidal magnetic field in the solar convection zone (SCZ), which, on our opinion, may help to understand why magnetic fields rise to the solar surface only in the sunspot “royal zone” and what is reason of the phenomenon of double maximum of sunspots cycle. The effect of magnetic pumping (advection) caused by radial inhomogeneity of matter with taking into account Sun’s rotation, in conjunction with deep meridional circulation, play a key role in proposed scenario. Magnetic buoyancy constrains the magnitude of toroidal field produced by the Ω effect near the bottom of the SCZ. Therefore, we examined two “antibuoyancy” effects: macroscopic turbulent diamagnetism and magnetic advection caused by radial inhomogeneity of fluid density in the SCZ, which we call as the ∇ρ effect. The Sun’s rotation substantially modifies the ∇ρ effect. The reconstructing of the toroidal field was examined assuming the balance between mean-field magnetic buoyancy, turbulent diamagnetism and the rotationally modified ∇ρ effect. We found that the reconstructing of large-scale magnetism develops differently in the near-polar and equatorial domains of the SCZ. In the near-polar domain, two downward pumping effects (macroscopic diamagnetism and rotational pumping) act against magnetic buoyancy and, as a result, they neutralize magnetic buoyancy and block the toroidal field (which is generated by the Ω effect) near the tachocline. Therefore, these two antibuoyancy effects might be the reason why sunspots at the near-polar zones are never observed. In other words, strong deep-seated fields at high latitudes may well be there, but they not produce sunspots. At the same time, in the deep layers of the equatorial domain, the rotational turbulent pumping due to the latitudinal convection anisotropy changes its direction to the opposite one (from downward to upward), thereby facilitating the migration of the field to the surface. We call this transport as first (upward) magnetic advection surge. The fragments of this floating up field can be observed after a while as sunspots at latitudes of the “royal zone”. Meanwhile, a deep equator-ward meridional flow ensures transporting of deep-seated toroidal field, which is blocked near pole in tachocline, from high latitudes to low ones where are favourable conditions for the floating up of the strong field. Here this belated strong field is transported upward to solar surface (the second upward magnetic advection surge). Ultimately, two time-delayed upward magnetic surges may cause on the surface in the “royal zone” the first and second maxima of sunspots cycle.


2019 ◽  
Vol 623 ◽  
pp. A54 ◽  
Author(s):  
Rohit Kumar ◽  
Laurène Jouve ◽  
Dibyendu Nandy

Context. Magnetohydrodynamic interactions between plasma flows and magnetic fields is fundamental to the origin and sustenance of the 11-year sunspot cycle. These processes are intrinsically three-dimensional (3D) in nature. Aims. Our goal is to construct a 3D solar dynamo model that on the one hand captures the buoyant emergence of tilted bipolar sunspot pairs, and on the other hand produces cyclic large-scale field reversals mediated via surface flux-transport processes – that is, the Babcock-Leighton mechanism. Furthermore, we seek to explore the relative roles of flux transport by buoyancy, advection by meridional circulation, and turbulent diffusion in this 3D dynamo model. Methods. We perform kinematic dynamo simulations where the prescribed velocity field is a combination of solar-like differential rotation and meridional circulation, along with a parametrized turbulent diffusivity. We use a novel methodology for modeling magnetic buoyancy through field-strength-dependent 3D helical up-flows that results in the formation of tilted bipolar sunspots. Results. The bipolar spots produced in our simulations participate in the process of poloidal-field generation through the Babcock-Leighton mechanism, resulting in self-sustained and periodic large-scale magnetic field reversal. Our parameter space study varying the amplitude of the meridional flow, the convection zone diffusivity, and parameters governing the efficiency of the magnetic buoyancy mechanism reveal their relative roles in determining properties of the sunspot cycle such as amplitude, period, and dynamical memory relevant to solar cycle prediction. We also derive a new dynamo number for the Babcock-Leighton solar dynamo mechanism which reasonably captures our model dynamics. Conclusions. This study elucidates the relative roles of different flux-transport processes in the Sun’s convection zone in determining the properties and physics of the sunspot cycle and could potentially lead to realistic, data-driven 3D dynamo models for solar-activity predictions and exploration of stellar magnetism and starspot formation in other stars.


Author(s):  
V. Krivodubskij

Since the mid-70s of the last century, a new direction in theoretical studies of the evolution of the global magnetism of the Sun in the framework of macroscopic MHD has been launched at the Astronomical Observatory of the Taras Shevchenko National University of Kyiv. The paper presents the results of a study of the processes of generation and restructuring of a large-scale (global) magnetic field based on the αΩ-dynamo model, taking into account new turbulent effects discovered in the theory of macroscopic MHD and data of helioseismological experiments on the internal rotation of the Sun. It was established that a sharp radial gradient of turbulent velocity in the lower half of the solar convective zone (SCZ) leads to a change in the sign of the azimuthal component of the helicity parameter α, resulting in the formation of a relatively thin layer of negative α-effect near the bottom of the SCZ. It was found that the layer of negative α-effect, together with the sign of the radial gradient of the angular velocity, detected in helioseismological experiments, makes it possible to explain the direction of migration of dynamo-waves on the solar surface. The magnetic saturation of the α-effect (alpha-quenching) in the deep layers of the SCZ was calculated. An explanation of the protracted duration of the 23rd solar cycle of about 13 years is proposed. For this, we used the observed data on a significant increase of the annual module of the magnetic fields of sunspots in the 23rd cycle. The calculated north-south asymmetry of the structure of the global magnetic field provides an opportunity to explain the phenomenon of the seeming magnetic “monopole”, which is observed during reversal of polar magnetism. It was found that the values of turbulent electrical conductivity and turbulent magnetic permeability of the solar plasma are significantly less than the corresponding gas-kinetic parameters. Therefore, the turbulent dissipation of solar magnetic fields is enhanced by 4–9 orders of magnitude compared with classical ohmic dissipation. Macroscopic turbulent diamagnetism of solar plasma was investigated. It has been found that in the lower part of the SCZ, turbulent diamagnetism acts against magnetic buoyancy, thus fulfilling the role of “negative magnetic buoyancy”. As a result of the balance of the effects of magnetic buoyancy and turbulent diamagnetism, a layer of blocked magnetic field of magnitude ≈ 3000 G is formed in the depths of the SCZ. The turbulent advection of a magnetic field in an inhomogeneous plasma density of the SCZ was studied. It was found that in the lower half of the SCZ of the equatorial domain, turbulent advection is directed upwards. As a result of the combined action of magnetic buoyancy and turbulent advection, deep strong toroidal fields are carried to the surface of the Sun in the latitudinal “royal zone” of sunspots. The role of horizontal turbulent diamagnetism in ensuring the long-term stability of sunspots was noted. To explain the observed phenomenon of double maxima of the solar spot cycle, a scenario was developed containing the generation of a magnetic field in the tachocline at the bottom of the SCZ and subsequent removal of this magnetic field from the depth layers to the surface in the latitudinal “royal zone”. The role of the radial omega-effect in the radiant zone in explaining the observed asymmetry in the amplitude of two neighbouring 11-years sunspot cycles was noted.


2018 ◽  
Vol 483 (1) ◽  
pp. 1008-1028 ◽  
Author(s):  
U P Steinwandel ◽  
M C Beck ◽  
A Arth ◽  
K Dolag ◽  
B P Moster ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document