scholarly journals Crustal Shear Wave Velocity Structure of Central Idaho and Eastern Oregon From Ambient Seismic Noise: Results From the IDOR Project

2019 ◽  
Vol 124 (2) ◽  
pp. 1601-1625 ◽  
Author(s):  
Paul M. Bremner ◽  
Mark P. Panning ◽  
R. M. Russo ◽  
Victor Mocanu ◽  
A. Christian Stanciu ◽  
...  
Author(s):  
B Pranata ◽  
T Yudistira ◽  
S Widiyantoro ◽  
B Brahmantyo ◽  
P R Cummins ◽  
...  

Summary We investigated the seismic shear wave velocity structure of the upper crust beneath the Bandung area in West Java, Indonesia, using ambient seismic noise tomography. We installed 60 seismographs to record ambient seismic noise continuously in the city of Bandung and its surrounding area for 8 months. After inter-station cross-correlation of recordings of ambient seismic noise, we obtained empirical Green's functions for Rayleigh waves. Group velocity dispersion curves for Rayleigh waves between periods of 1 s and 8 s were measured on each inter-station path by applying the multiple filter analysis method with phase-matched processing. The spatial variation of group velocities shows a good correlation with the geological structure of the Bandung Basin. The Rayleigh wave dispersion maps were inverted to obtain the 1D shear wave velocity profiles beneath each station, which were interpolated to infer a pseudo-3D structure under the study region. The results show that the Bandung Basin has a thick layer of sediment. Along the northern, eastern and southern mountains surrounding the Bandung Basin there is high-velocity structure, except to the west of the Tangkuban Parahu volcano, where a massive low-velocity structure extending throughout the upper crust might indicate the presence of fluids or partial melts.


1998 ◽  
Vol 41 (1) ◽  
Author(s):  
G. A. Tselentis ◽  
G. Delis

The importance of detailed knowledge of the shear-wave velocity structure of the upper geological layers was recently stressed in strong motion studies. In this work we describe an algorithm which we have developed to infer the 1D shear wave velocity structure from the inversion of multichannel surface wave dispersion data (ground-roll). Phase velocities are derived from wavenumber-frequency stacks while the inversion process is speeded up by the use of Householder transformations. Using synthetic and experimental data, we examined the applicability of the technique in deducing S-wave profiles. The comparison of the obtained results with those derived from cross-hole measurements and synthesized wave fields proved the reliability of the technique for the rapid assessment of shear wave profiles during microzonation investigations.


2010 ◽  
Vol 53 (2) ◽  
Author(s):  
Luigia Cristiano ◽  
Simona Petrosino ◽  
Gilberto Saccorotti ◽  
Matthias Ohrnberger ◽  
Roberto Scarpa

Sign in / Sign up

Export Citation Format

Share Document