northeastern tibet
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 20)

H-INDEX

22
(FIVE YEARS 3)

Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 2) ◽  
Author(s):  
Chen Gan ◽  
Ai Ming ◽  
Zheng Wenjun ◽  
Bi Haiyun ◽  
Liu Jinrui ◽  
...  

Abstract The Elashan fault (ELSF) and Qinghainanshan fault (QHNF), two major faults developed around the Qinghai Lake and Chaka-Gonghe basins, are of great importance for investigating the deformation model of the internal northeastern Tibetan Plateau. However, their late Pleistocene slip rates remain poorly constrained. In this study, we combine high-resolution topography acquired from unmanned aerial vehicles (UAV) and geomorphological dating to calculate the slip rates of the two faults. We visited the central ELSF and western QHNF and measured displaced terraces and stream channels. We collected 10Be samples on the surface of terraces to constrain the abandonment ages. The dextral slip rate of the central segment of the Elashan fault is estimated to be 2.6±1.2 mm/yr. The uplift rates since the late Pleistocene of the Elashan and Qinghainanshan faults are 0.4±0.04 mm/yr and 0.2±0.03 mm/yr, respectively. Comparing the geological rates with the newly published global positioning system (GPS) rates, we find that the slip rates of the major strike-slip faults around the Qinghai Lake and Chaka-Gonghe basins are approximately consistent from the late Pleistocene to the present day. The overall NE shortening rates by summing up the geological slip rates on major faults between the East Kunlun and Haiyuan faults are ~3.4 mm/yr, smaller than the geodetic shortening rates (~4.9 to 6.4 mm/yr), indicating that distributed deformation plays an important role in accommodating the regional deformation. By analyzing the geometrical and kinematic characteristics of the major faults surrounding the basins, we suggest that the kinematic deformation of the internal northeastern Tibet is a nonrigid bookshelf model that consists of counterclockwise rotation (~0.8° Myr-1) and distributed thrusting.


Numen ◽  
2021 ◽  
Vol 68 (5-6) ◽  
pp. 463-487
Author(s):  
Jane Caple

Abstract Studies of belonging and community formation often emphasize commonality of values, emotions, and feelings. This article highlights the importance of practices that create relations of distance between members as well as closeness. Drawing on fieldwork in institutionalized Tibetan Buddhist communities in northeastern Tibet (Amdo/Qinghai), I focus on everyday practices of respect and faith that materialize community by putting monks, reincarnate lamas, and laity “in their place.” This can include the most quotidian of acts, such as standing when someone enters a room. I argue that such practices of “feeling apart” and their refusal are central to individual negotiations of religious belonging and to the dynamic, ongoing process of community formation. The importance of these practices becomes particularly apparent when, as is the case in northeastern Tibet, seemingly taken-for-granted relations of belonging and the emotional style that enacts and creates these relations are felt to be precarious.


Author(s):  
Yong Yu ◽  
Yongshun John Chen ◽  
Yongge Feng ◽  
Meijian An ◽  
Xiaofeng Liang ◽  
...  

Author(s):  
Yanchuan Li ◽  
Jean‐Mathieu Nocquet ◽  
Xinjian Shan ◽  
Xiaogang Song
Keyword(s):  

2021 ◽  
pp. jgs2020-207
Author(s):  
Feng Cheng ◽  
Andrew V. Zuza ◽  
Peter J. Haproff ◽  
Chen Wu ◽  
Christina Neudorf ◽  
...  

Existing models of intracontinental deformation have focused on plate-like rigid body motion v. viscous-flow-like distributed deformation. To elucidate how plate convergence is accommodated by intracontinental strike-slip faulting and block rotation within a fold–thrust belt, we examine the Cenozoic structural framework of the central Qilian Shan of northeastern Tibet, where the NW-striking, right-slip Elashan and Riyueshan faults terminate at the WNW-striking, left-slip Haiyuan and Kunlun faults. Field- and satellite-based observations of discrete right-slip fault segments, releasing bends, horsetail termination splays and off-fault normal faulting suggest that the right-slip faults accommodate block rotation and distributed west–east crustal stretching between the Haiyuan and Kunlun faults. Luminescence dating of offset terrace risers along the Riyueshan fault yields a Quaternary slip rate of c. 1.1 mm a−1, which is similar to previous estimates. By integrating our results with regional deformation constraints, we propose that the pattern of Cenozoic deformation in northeastern Tibet is compatible with west–east crustal stretching/lateral displacement, non-rigid off-fault deformation and broad clockwise rotation and bookshelf faulting, which together accommodate NE–SW India–Asia convergence. In this model, the faults represent strain localization that approximates continuum deformation during regional clockwise lithospheric flow against the rigid Eurasian continent.Supplementary material: Luminescence dating procedures and protocols is available at https://doi.org/10.17605/OSF.IO/CR9MNThematic collection: This article is part of the Fold-and-thrust belts and associated basins collection available at: https://www.lyellcollection.org/cc/fold-and-thrust-belts


2021 ◽  
Vol 7 (5) ◽  
pp. eabc7741
Author(s):  
Shu-Feng Li ◽  
Paul J. Valdes ◽  
Alex Farnsworth ◽  
T. Davies-Barnard ◽  
Tao Su ◽  
...  

The growth of the Tibetan Plateau throughout the past 66 million years has profoundly affected the Asian climate, but how this unparalleled orogenesis might have driven vegetation and plant diversity changes in eastern Asia is poorly understood. We approach this question by integrating modeling results and fossil data. We show that growth of north and northeastern Tibet affects vegetation and, crucially, plant diversity in eastern Asia by altering the monsoon system. This northern Tibetan orographic change induces a precipitation increase, especially in the dry (winter) season, resulting in a transition from deciduous broadleaf vegetation to evergreen broadleaf vegetation and plant diversity increases across southeastern Asia. Further quantifying the complexity of Tibetan orographic change is critical for understanding the finer details of Asian vegetation and plant diversity evolution.


2020 ◽  
Vol 560 ◽  
pp. 110016 ◽  
Author(s):  
A. Licht ◽  
G. Dupont-Nivet ◽  
N. Meijer ◽  
J. Caves Rugenstein ◽  
A. Schauer ◽  
...  

2020 ◽  
Vol 91 (6) ◽  
pp. 3304-3312
Author(s):  
Xingpeng Dong ◽  
Dinghui Yang ◽  
Hejun Zhu

Abstract Northeastern Tibet is still in the primary stage of tectonic deformation and is the key area for studying the lateral expansion of the Tibetan plateau. In particular, the existence of lower crustal flow, southward subduction of the Asian lithosphere, and northward subduction of the Indian lithosphere beneath northeastern Tibet remains controversial. To provide insights into these issues, a high-resolution 3D radially anisotropic model of the lithospheric structure of northeastern Tibet is developed based on adjoint tomography. The Tibetan plateau is characterized as a low S-wave velocity lithosphere, in contrast with the relatively high S-wave velocities of the stable Asian blocks. Our tomographic result indicates that the low-velocity zone (LVZ) within the deep crust extends northeastward from Songpan–Ganzi to Qilian, which is interpreted as a channel flow within the crust. The upper mantle of Alxa and Qinling–Qilian are dominated by a rather homogeneous LVZ, which is inconsistent with the hypothesis that the Asian lithospheric mantle is being subducted southward beneath northeastern Tibet. Furthermore, high-velocity regions are observed in the southern Songpan–Ganzi region at depths ranging from 100 to 200 km, indicating that the northward-subducting Indian plate has probably reached the Xianshuihe fault.


Sign in / Sign up

Export Citation Format

Share Document