Bio‐optical Properties of Surface Waters in the Atlantic Water Inflow Region off Spitsbergen (Arctic Ocean)

2019 ◽  
Vol 124 (3) ◽  
pp. 1964-1987 ◽  
Author(s):  
Piotr Kowalczuk ◽  
Sławomir Sagan ◽  
Anna Makarewicz ◽  
Justyna Meler ◽  
Karolina Borzycka ◽  
...  
2021 ◽  
Author(s):  
Zoé Koenig ◽  
Kjersti Kalhagen ◽  
Eivind Kolås ◽  
Ilker Fer ◽  
Frank Nilsen ◽  
...  

<p>North of Svalbard is a key region for the Arctic Ocean heat and salt budget as it is the gateway for one of the main branches of Atlantic Water to the Arctic Ocean. As the Atlantic Water layer advances into the Arctic, its core deepens from about 250 m depth around the Yermak Plateau to 350 m in the Laptev Sea, and gets colder and less saline due to mixing with surrounding waters. The complex topography in the region facilitates vertical and horizontal exchanges between the water masses and, together with strong shear and tidal forcing driving increased mixing rates, impacts the heat and salt content of the Atlantic Water layer that will circulate around the Arctic Ocean.</p><p>In September 2018, 6 moorings organized in 2 arrays were deployed across the Atlantic Water Boundary current for more than one year (until November 2019), within the framework of the Nansen Legacy project to investigate the seasonal variations of this current and the transformation of the Atlantic Water North of Svalbard. The Atlantic Water inflow exhibits a large seasonal signal, with maxima in core temperature and along-isobath velocities in fall and minima in spring. Volume transport of the Atlantic Water inflow varies from 0.7 Sv in spring to 3 Sv in fall. An empirical orthogonal function analysis of the daily cross-isobath temperature sections reveals that the first mode of variation (explained variance ~80%) is the seasonal cycle with an on/off mode in the temperature core. The second mode (explained variance ~ 15%) corresponds to a short time scale (less than 2 weeks) variability in the onshore/offshore displacement of the temperature core. On the shelf, a counter-current flowing westward is observed in spring, which transports colder (~ 1°C) and fresher (~ 34.85 g kg<sup>-1</sup>) water than Atlantic Water (θ > 2°C and S<sub>A</sub> > 34.9 g kg<sup>-1</sup>). The processes driving the dynamic of the counter-current are under investigation. At greater depth (~1000 m) on the offshore part of the slope, a bottom-intensified current is noticed that seems to covary with the wind stress curl. Heat loss of the Atlantic Water between the two mooring arrays is maximum in winter reaching 250 W m<sup>-2</sup> when the current is the largest and the net radiative flux from the atmosphere to the ocean is the smallest (only 50 W m<sup>-2</sup> compared to about 400 W m<sup>-2</sup> in summer).</p>


2019 ◽  
Vol 6 ◽  
Author(s):  
Maria Vernet ◽  
Ingrid H. Ellingsen ◽  
Lena Seuthe ◽  
Dag Slagstad ◽  
Mattias R. Cape ◽  
...  

2019 ◽  
Vol 124 (1) ◽  
pp. 267-280 ◽  
Author(s):  
L. Crews ◽  
A. Sundfjord ◽  
T. Hattermann

2009 ◽  
Vol 56 (4) ◽  
pp. 513-527 ◽  
Author(s):  
Igor A. Dmitrenko ◽  
Dorothea Bauch ◽  
Sergey A. Kirillov ◽  
Nikolay Koldunov ◽  
Peter J. Minnett ◽  
...  

2021 ◽  
Author(s):  
Jesse R. Farmer ◽  
Daniel M. Sigman ◽  
Julie Granger ◽  
Ona M. Underwood ◽  
François Fripiat ◽  
...  

AbstractSalinity-driven density stratification of the upper Arctic Ocean isolates sea-ice cover and cold, nutrient-poor surface waters from underlying warmer, nutrient-rich waters. Recently, stratification has strengthened in the western Arctic but has weakened in the eastern Arctic; it is unknown if these trends will continue. Here we present foraminifera-bound nitrogen isotopes from Arctic Ocean sediments since 35,000 years ago to reconstruct past changes in nutrient sources and the degree of nutrient consumption in surface waters, the latter reflecting stratification. During the last ice age and early deglaciation, the Arctic was dominated by Atlantic-sourced nitrate and incomplete nitrate consumption, indicating weaker stratification. Starting at 11,000 years ago in the western Arctic, there is a clear isotopic signal of Pacific-sourced nitrate and complete nitrate consumption associated with the flooding of the Bering Strait. These changes reveal that the strong stratification of the western Arctic relies on low-salinity inflow through the Bering Strait. In the central Arctic, nitrate consumption was complete during the early Holocene, then declined after 5,000 years ago as summer insolation decreased. This sequence suggests that precipitation and riverine freshwater fluxes control the stratification of the central Arctic Ocean. Based on these findings, ongoing warming will cause strong stratification to expand into the central Arctic, slowing the nutrient supply to surface waters and thus limiting future phytoplankton productivity.


Sign in / Sign up

Export Citation Format

Share Document