scholarly journals Arctic Ocean stratification set by sea level and freshwater inputs since the last ice age

2021 ◽  
Author(s):  
Jesse R. Farmer ◽  
Daniel M. Sigman ◽  
Julie Granger ◽  
Ona M. Underwood ◽  
François Fripiat ◽  
...  

AbstractSalinity-driven density stratification of the upper Arctic Ocean isolates sea-ice cover and cold, nutrient-poor surface waters from underlying warmer, nutrient-rich waters. Recently, stratification has strengthened in the western Arctic but has weakened in the eastern Arctic; it is unknown if these trends will continue. Here we present foraminifera-bound nitrogen isotopes from Arctic Ocean sediments since 35,000 years ago to reconstruct past changes in nutrient sources and the degree of nutrient consumption in surface waters, the latter reflecting stratification. During the last ice age and early deglaciation, the Arctic was dominated by Atlantic-sourced nitrate and incomplete nitrate consumption, indicating weaker stratification. Starting at 11,000 years ago in the western Arctic, there is a clear isotopic signal of Pacific-sourced nitrate and complete nitrate consumption associated with the flooding of the Bering Strait. These changes reveal that the strong stratification of the western Arctic relies on low-salinity inflow through the Bering Strait. In the central Arctic, nitrate consumption was complete during the early Holocene, then declined after 5,000 years ago as summer insolation decreased. This sequence suggests that precipitation and riverine freshwater fluxes control the stratification of the central Arctic Ocean. Based on these findings, ongoing warming will cause strong stratification to expand into the central Arctic, slowing the nutrient supply to surface waters and thus limiting future phytoplankton productivity.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jiyoung Lee ◽  
Sung-Ho Kang ◽  
Eun Jin Yang ◽  
Alison M. Macdonald ◽  
Hyoung Min Joo ◽  
...  

AbstractThe western Arctic Ocean is experiencing some of the most rapid environmental changes in the Arctic. However, little is known about the microbial community response to these changes. Employing observations from the summer of 2017, this study investigated latitudinal variations in bacterial community composition in surface waters between the Bering Strait and Chukchi Borderland and the factors driving the changes. Results indicate three distinctive communities. Southern Chukchi bacterial communities are associated with nutrient rich conditions, including genera such as Sulfitobacter, whereas the northern Chukchi bacterial community is dominated by SAR clades, Flavobacterium, Paraglaciecola, and Polaribacter genera associated with low nutrients and sea ice conditions. The frontal region, located on the boundary between the southern and northern Chukchi, is a transition zone with intermediate physical and biogeochemical properties; however, bacterial communities differed markedly from those found to the north and south. In the transition zone, Sphingomonas, with as yet undetermined ecological characteristics, are relatively abundant. Latitudinal distributions in bacterial community composition are mainly attributed to physical and biogeochemical characteristics, suggesting that these communities are susceptible to Arctic environmental changes. These findings provide a foundation to improve understanding of bacterial community variations in response to a rapidly changing Arctic Ocean.


1987 ◽  
Vol 24 (8) ◽  
pp. 1562-1569 ◽  
Author(s):  
Robert W. Dalrymple ◽  
Oliver C. Maass

The clay-sized (< 2 μm) fraction of the silty and arenaceous lutites constituting CESAR cores 14 and 103 (Alpha Ridge, central Arctic Ocean) is composed predominantly of mica (40–60%), with subequal percentages (10–20%) of kaolinite and chlorite and lesser amounts (< 5%) of smectite, quartz, plagioclase, and potassium feldspar. Calcite and dolomite also occur, but only intermittently in the upper 1.2 m; dissolution is probably responsible for their absence in other units. The silty lutites have a constant mineralogy throughout the 4.5 m long (~ 4.25 Ma) section, whereas some of the arenaceous intervals in the upper 2.1 m have markedly higher amounts of kaolinite, calcite, dolomite, and, to a lesser extent, smectite. The silty lutites were most likely derived from the Beaufort Sea shelf during nonglacial periods, whereas the distinctive components in the sandy layers suggest that they were transported from the Canadian Arctic Islands and Greenland by glacial ice. The absence of kaolinite peaks in the lower half of the core implies that the western Arctic Islands were not glaciated prior to 2.1 Ma, a conclusion supporting previous findings that the climate of the Arctic was warmer in the Pliocene.


2017 ◽  
Author(s):  
Vincent Le Fouest ◽  
Atsushi Matsuoka ◽  
Manfredi Manizza ◽  
Mona Shernetsky ◽  
Bruno Tremblay ◽  
...  

Abstract. Future climate warming of the Arctic could potentially enhance the load of riverine dissolved organic carbon (RDOC) of Arctic rivers due to increased carbon mobilization within watersheds. A greater flux of RDOC might thus impact the biogeochemical processes of the coastal Arctic Ocean (AO). In this study, we show that estimates of RDOC concentrations in the surface waters of the Canadian Beaufort Sea computed for 2003–2011 by both optical remote sensing and a physical-biogeochemical coupled model compare favorably. Our results suggest that, over spring-summer, RDOC contributes to 35 % of primary production and that an equivalent of ~ 10 % of the riverine RDOC is exported westwards with a potential for fueling the biological production of the eastern Alaskan nearshore waters. The combination of model and satellite data can be extended to the entire AO to quantify the expected changes in RDOC fluxes and their potential impact on AO biogeochemistry. This is left for future work.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jang-Mu Heo ◽  
Seong-Su Kim ◽  
Sung-Ho Kang ◽  
Eun Jin Yang ◽  
Ki-Tae Park ◽  
...  

AbstractThe western Arctic Ocean (WAO) has experienced increased heat transport into the region, sea-ice reduction, and changes to the WAO nitrous oxide (N2O) cycles from greenhouse gases. We investigated WAO N2O dynamics through an intensive and precise N2O survey during the open-water season of summer 2017. The effects of physical processes (i.e., solubility and advection) were dominant in both the surface (0–50 m) and deep layers (200–2200 m) of the northern Chukchi Sea with an under-saturation of N2O. By contrast, both the surface layer (0–50 m) of the southern Chukchi Sea and the intermediate (50–200 m) layer of the northern Chukchi Sea were significantly influenced by biogeochemically derived N2O production (i.e., through nitrification), with N2O over-saturation. During summer 2017, the southern region acted as a source of atmospheric N2O (mean: + 2.3 ± 2.7 μmol N2O m−2 day−1), whereas the northern region acted as a sink (mean − 1.3 ± 1.5 μmol N2O m−2 day−1). If Arctic environmental changes continue to accelerate and consequently drive the productivity of the Arctic Ocean, the WAO may become a N2O “hot spot”, and therefore, a key region requiring continued observations to both understand N2O dynamics and possibly predict their future changes.


2009 ◽  
Vol 1 (1) ◽  
pp. 511-525
Author(s):  
Paul Arthur Berkman

Abstract Environmental and geopolitical state-changes are the underlying first principles of the diverse stakeholder positioning in the Arctic Ocean. The Arctic Ocean is changing from an ice-covered region to an ice-free region during the summer, which is an environmental state-change. As provided under the framework of the United Nations Convention on the Law of the Sea (UNCLOS), the central Arctic Ocean currently involves “High-Seas” (beyond the “Exclusive Economic Zones”) and the underlying “Area” of the deep-sea floor (beyond the “Continental Shelves”). Governance applications of this ‘donut’ demography – with international space surrounded by sovereign sectors – would be a geopolitical state-change in the Arctic Ocean. International governance strategies and applications for the central Arctic Ocean have far-reaching implications for the stewardship of other international spaces, which between Antarctica and the ocean beyond national jurisdictions account for nearly 75 percent of the Earth’s surface. In view of planetary-scale strategies for humankind, with frameworks such as climate, the Arctic Ocean underscores the challenges and opportunities to balance the governance of nation states and international spaces centuries into the future.


2017 ◽  
Author(s):  
Sang Heon Lee ◽  
Jang Han Lee ◽  
Howon Lee ◽  
Jae Joong Kang ◽  
Jae Hyung Lee ◽  
...  

Abstract. The Laptev and East Siberian seas are the least biologically studied region in the Arctic Ocean, although they are highly dynamic in terms of active processing of organic matter impacting the transport to the deep Arctic Ocean. Field-measured carbon and nitrogen uptake rates of phytoplankton were conducted in the Laptev and East Siberian seas as part of the NABOS (Nansen and Amundsen Basins Observational System) program. Major inorganic nutrients were mostly depleted at 100–50 % light depths but were not depleted within the euphotic depths in the Laptev and East Siberian seas. The water column-integrated chl-a concentration in this study was significantly higher than that in the western Arctic Ocean (t-test, p > 0.01). Unexpectedly, the daily carbon and nitrogen uptake rates in this study (average ± S.D. = 110.3 ± 88.3 mg C m−2 d−1 and 37.0 ± 25.8 mg N m−2 d−1, respectively) are within previously reported ranges. Surprisingly, the annual primary production (13.2 g C m−2) measured in the field during the vegetative season is approximately one order of magnitude lower than the primary production reported from a satellite–based estimation. Further validation using field-measured observations is necessary for a better projection of the ecosystem in the Laptev and East Siberian seas responding to ongoing climate change.


2021 ◽  
Author(s):  
Flor Vermassen ◽  
Helen K. Coxall ◽  
Gabriel West ◽  
Matt O'Regan

&lt;p&gt;Harsh environmental and taphonomic conditions in the central Arctic Ocean make age-modelling for Quaternary palaeoclimate reconstructions challenging. Pleistocene age models in the Arctic have relied heavily on cyclostratigraphy using lithologic variability tied to relatively poorly calibrated foraminifera biostratigraphic events. Recently, the identification of &lt;em&gt;Pseudoemiliania lacunosa&lt;/em&gt; in a sediment core from the Lomonosov Ridge, a coccolithophore that went extinct during marine isotope stage (MIS) 12 (478-424 ka), has been used to delineate glacial-interglacial units back to MIS 14 (~500 ka BP). Here we present a comparative study on how this nannofossil biostratigraphy fits with existing foraminifer biohorizons that are recognised in central Arctic Ocean sediments. A new core from the Alpha Ridge is presented, together with its lithologic variability and down-core compositional changes in planktonic and benthic foraminifera. The core exhibits an interval dominated by &lt;em&gt;Turborotalita egelida&lt;/em&gt;, a planktonic foraminifer that is increasingly being adopted as a marker for MIS11 in sediment cores from the Amerasian Basin of the Arctic Ocean. We show that the new age-constraints provided by calcareous nannofossils are difficult to reconcile with the proposed MIS 11 age for the &lt;em&gt;T. egelida&lt;/em&gt; horizon. Instead, the emerging litho- and coccolith biostratigraphy implies that Amerasian Basin sediments predating MIS5 are older than the egelida-based age models suggest, i.e. that the &lt;em&gt;T. egelida&lt;/em&gt; Zone is older than MIS11. These results expose uncertainties regarding the age determination of glacial-interglacial cycles in the Amerasian basin and point out that future work is required to reconcile the micro- and nannofossil biostratigraphy of the Amerasian and Eurasian basin.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document