scholarly journals Variation of Anomalous Convergence Around Kalimantan Island in Lower Troposphere and Its Role in Connecting the East Asian Summer Monsoon and Australian Winter Monsoon

2019 ◽  
Vol 124 (13) ◽  
pp. 6892-6903 ◽  
Author(s):  
Wei Chen ◽  
Zhaoyong Guan ◽  
Qi Xu ◽  
Huadong Yang
2021 ◽  
Vol 126 (4) ◽  
Author(s):  
Tiantian Yu ◽  
Wen Chen ◽  
Juan Feng ◽  
Kaiming Hu ◽  
Lei Song ◽  
...  

2020 ◽  
Author(s):  
Feng Shi ◽  
Hugues Goosse ◽  
Jianping Li ◽  
Fredrik Charpentier Ljungqvist ◽  
Sen Zhao ◽  
...  

<p>The EASM largely determines variations in summer precipitation in the East Asian monsoon region where approximately one-quarter of the world’s population live. A reliable East Asian summer monsoon (EASM) index covering several centuries is important in order to understand EASM dynamics. The wind-field is frequently used to calculate the EASM index during the instrumental period. However, available climate proxy data rather respond to direct precipitation changes. A gridded extended summer (May–September, MJJAS) precipitation reconstruction for China covering AD 1470–2000 is used to indirectly reconstruct two types of EASM indices (defined by the strength of the 850hPa southwesterly winds and a north-south gradient of the zonal winds), using the negative correlation between the EASM index and summer (June–August, JJA) rainfall in the middle and lower reaches of the Yangtze River of China. The two EASM indices are validated by independent historical documentary data for eastern China. The physical processes ruling the EASM variability are explored, highlighting a baroclinic structure over the middle and lower reaches of the Yangtze River. It includes an anticyclonic circulation accompanied by high pressure anomalies in the lower troposphere and a cyclonic circulation with low pressure anomaly in the upper troposphere. This is associated with a decrease in atmospheric water vapor content (due to divergence), which will decrease summer rainfall in the region, and contribute to the strengthen of the EASM variability. The dominated and inter-annual component of the EASM variation is possibly linked to the ‘ENSO-like’ sea surface temperature according to a data assimilation experiment performed with the Community Earth System Model-Last Millennium Ensemble (CESM-LME) simulation.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Wenzhe Lyu ◽  
Tengfei Fu ◽  
Zhangxi Hu ◽  
Ying Zhong Tang ◽  
Guangquan Chen ◽  
...  

The mud areas of East Asian marginal seas record considerable information about regional environmental evolution. However, debate continues regarding the relative importance of the major factors in regional sedimentary dynamics, i.e., the East Asian summer monsoon, East Asian winter monsoon, and oceanic circulation. In this study, we investigated the characteristics of grain size from a gravity core obtained in the South Yellow Sea to reveal changes in sedimentary dynamics since 6,000 years BP, and to elucidate the relationship between the East Asian summer monsoon and the East Asian winter monsoon. We found that the mean grain size was in the range of 6.9–7.8 Φ, the sediment was poorly sorted within a small range (1.2, 1.5), and the M values from 4.7 to 6.7 μm and most of the C values from 24 to 65 μm suggested pelagic suspension transport. Results indicated that the intensity of both the East Asian summer monsoon and the East Asian winter monsoon showed a fluctuating trend of decrease after approximately 6,000 years BP, and that the relationship between them was generally anticorrelated. Based on these results, we suggest that positive correlation between the East Asian summer monsoon and the East Asian winter monsoon usually results in the fall or establishment of ancient dynasties in the Central Plains of China and that negative correlation between them is controlled by strong solar radiation. Weakening of solar radiation diminishes its control of the intensity of (and thus the correlation between) the East Asian summer monsoon and the East Asian winter monsoon, at which time the North Atlantic Oscillation plays a modulating role.


2001 ◽  
Vol 55 (3) ◽  
pp. 363-370 ◽  
Author(s):  
Zhimin Jian ◽  
Baoqi Huang ◽  
Wolfgang Kuhnt ◽  
Hui-Ling Lin

AbstractForaminifera from two cores off eastern Vietnam and the northwestern Philippines, where modern summer and winter monsoon-driven upwelling occurs in the South China Sea, respectively, were analyzed to evaluate the changes in paleoproductivity and upper water structure over the last 220,000 yr. We observed enhanced organic carbon flux and a shoaled thermocline when upwelling intensified off eastern Vietnam during interglacial ages and off the northwestern Philippines during glacial ages. This indicates that the East Asian summer monsoon increased while the winter monsoon decreased during interglacial ages. Particularly, the upwelling reached a maximum off eastern Vietnam during late marine isotopic stage (MIS) 5 and off the northwestern Philippines during MIS 2, implying that the summer monsoon decreased gradually since MIS 5 while the winter monsoon displayed an opposite trend. The variations in upwelling proxies exhibit a distinct cyclicity with frequencies near 41,000 yr and 23,000 yr off eastern Vietnam, in contrast to a strong frequency peak near 100,000 yr off the northwestern Philippines. We suggest that the East Asian summer monsoon has been forced by changes in solar insolation associated with precession and obliquity, while ice-volume forcing is probably a primary factor in determining the strength and timing of the East Asian winter monsoon but with less important insolation forcing.


2021 ◽  
Vol 414 ◽  
pp. 125477
Author(s):  
Xiaohui Wang ◽  
Kai Liu ◽  
Lixin Zhu ◽  
Changjun Li ◽  
Zhangyu Song ◽  
...  

2021 ◽  
Vol 558 ◽  
pp. 116758
Author(s):  
Yanjun Cai ◽  
Xing Cheng ◽  
Le Ma ◽  
Ruixue Mao ◽  
Sebastian F.M. Breitenbach ◽  
...  

2012 ◽  
Vol 25 (20) ◽  
pp. 6975-6988 ◽  
Author(s):  
Jung-Eun Chu ◽  
Saji N. Hameed ◽  
Kyung-Ja Ha

Abstract The hypothesis that regional characteristics of the East Asian summer monsoon (EASM) result from the presence of nonlinear coupled features that modulate the seasonal circulation and rainfall at the intraseasonal time scale is advanced in this study. To examine this hypothesis, the authors undertake the analysis of daily EASM variability using a nonlinear multivariate data classifying algorithm known as self-organizing mapping (SOM). On the basis of various SOM node analyses, four major intraseasonal phases of the EASM are identified. The first node describes a circulation state corresponding to weak tropical and subtropical pressure systems, strong upper-level jets, weakened monsoonal winds, and cyclonic upper-level vorticity. This mode, related to large rainfall anomalies in southeast China and southern Japan, is identified as the mei-yu–baiu phase. The second node represents a distinct circulation state corresponding to a strengthened subtropical high, monsoonal winds, and anticyclonic upper-level vorticity in southeast Korea, which is identified as the changma phase. The third node is related to copious rain over Korea following changma, which we name the postchangma phase. The fourth node is situated diagonally opposite the changma mode. Because Korea experiences a dry spell associated with this SOM node, it is referred to as the dry-spell phase. The authors also demonstrate that a strong modulation of the changma and dry-spell phases on interannual time scales occurs during El Niño and La Niña years. Results imply that the key to predictability of the EASM on interannual time scales may lie with analysis and exploitation of its nonlinear characteristics.


2016 ◽  
Vol 29 (13) ◽  
pp. 5027-5040 ◽  
Author(s):  
Jie Cao ◽  
Shu Gui ◽  
Qin Su ◽  
Yali Yang

Abstract The interannual zonal movement of the interface between the Indian summer monsoon and the East Asian summer monsoon (IIE), associated with the spring sea surface temperature (SST) seesaw mode (SSTSM) over the tropical Indian Ocean (TIO) and the tropical central-western Pacific (TCWP), is studied for the period 1979–2008. The observational analysis is based on Twentieth Century Reanalysis data (version 2) of atmospheric circulations, Extended Reconstructed SST data (version 3), and the Climate Prediction Center Merged Analysis of Precipitation. The results indicate that the IIE’s zonal movement is significantly and persistently correlated with the TIO–TCWP SSTSM, from spring to summer. The results of two case studies resemble those obtained by regression analysis. Experiments using an atmospheric general circulation model (ECHAM6) substantiate the key physical processes revealed in the observational analysis. When warmer (colder) SSTs appear in the TIO and colder (warmer) SSTs occur in the TCWP, the positive (negative) SSTSM forces anomalous easterly (westerly) winds over the Bay of Bengal (BOB), South China Sea (SCS), and western North Pacific (WNP). The anomalous easterly (westerly) winds further result in a weakened (strengthened) southwest summer monsoon over the BOB and a strengthened (weakened) southeast summer monsoon over the SCS and WNP. This causes the IIE to shift farther eastward (westward) than normal.


2010 ◽  
Vol 136 (649) ◽  
pp. 829-841 ◽  
Author(s):  
Xuguang Sun ◽  
Richard J. Greatbatch ◽  
Wonsun Park ◽  
Mojib Latif

Sign in / Sign up

Export Citation Format

Share Document