scholarly journals The Geochemistry of Englacial Brine From Taylor Glacier, Antarctica

2019 ◽  
Vol 124 (3) ◽  
pp. 633-648 ◽  
Author(s):  
W. Berry Lyons ◽  
Jill A. Mikucki ◽  
Laura A. German ◽  
Kathleen A. Welch ◽  
Susan A. Welch ◽  
...  
Keyword(s):  
2018 ◽  
Author(s):  
Ellen Taylor ◽  
◽  
Bruce W. Boles ◽  
Peter A. Lee ◽  
Richard Campen ◽  
...  
Keyword(s):  

2020 ◽  
Vol 32 (3) ◽  
pp. 223-237
Author(s):  
Jade P. Lawrence ◽  
Peter T. Doran ◽  
Luke A. Winslow ◽  
John C. Priscu

AbstractBrine beneath Taylor Glacier has been proposed to enter the proglacial west lobe of Lake Bonney (WLB) as well as from Blood Falls, a surface discharge point at the Taylor Glacier terminus. The brine strongly influences the geochemistry of the water column of WLB. Year-round measurements from this study are the first to definitively identify brine intrusions from a subglacial entry point into WLB. Furthermore, we excluded input from Blood Falls by focusing on winter dynamics when the absence of an open water moat prevents surface brine entry. Due to the extremely high salinities below the chemocline in WLB, density stratification is dominated by salinity, and temperature can be used as a passive tracer. Cold brine intrusions enter WLB at the glacier face and intrude into the water column at the depth of neutral buoyancy, where they can be identified by anomalously cold temperatures at that depth. High-resolution measurements also reveal under-ice internal waves associated with katabatic wind events, a novel finding that challenges long-held assumptions about the stability of the WLB water column.


2004 ◽  
Vol 39 ◽  
pp. 79-84 ◽  
Author(s):  
Alun Hubbard ◽  
Wendy Lawson ◽  
Brian Anderson ◽  
Bryn Hubbard ◽  
Heinz Blatter

AbstractIce-penetrating radar and modelling data are presented suggesting the presence of a zone of temperate ice, water ponding or saturated sediment beneath the tongue of Taylor Glacier, Dry Valleys, Antarctica. The proposed subglacial zone lies 3–6 km up-glacier of the terminus and is 400– 1000m across. The zone coincides with an extensive topographic overdeepening to 80m below sea level. High values of residual bed reflective power across this zone compared to other regions and the margins of the glacier require a high dielectric contrast between the ice and the bed and are strongly indicative of the presence of basal water or saturated sediment. Analysis of the hydraulic equipotential surface also indicates strong convergence into this zone of subglacial water flow paths. However, thermodynamic modelling reveals that basal temperatures in this region could not exceed –7˚C relative to the pressure-melting point. Such a result is at odds with the radar observations unless the subglacial water is a hypersaline brine.


1995 ◽  
Vol 7 (1) ◽  
pp. 73-85 ◽  
Author(s):  
A.D. Morrison ◽  
A. Reay

At Terra Cotta Mountain, in the Taylor Glacier region of south Victoria Land, a 237 m thick Ferrar Dolerite sill is intruded along the unconformity between basement granitoids and overlying Beacon Supergroup sedimentary rocks. Numerous Ferrar Dolerite dykes intrude the Beacon Supergroup and represent later phases of intrusion. Major and trace element data indicate variation both within and between the separate intrusions. Crystal fractionation accounts for much of the geochemical variation between the intrusive events. However, poor correlations between many trace elements require the additional involvement of open system processes. Chromium is decoupled from highly incompatible elements consistent with behaviour predicted for a periodically replenished, tapped and fractionating magma chamber. Large ion lithophile element-enrichment and depletion in Nb, Sr, P and Ti suggests the addition of a crustal component or an enriched mantle source. The trace element characteristics of the Dolerites from Terra Cotta Mountain are similar to those of other Ferrar Group rocks from the central Transantarctic Mountains and north Victoria Land, as well as with the Tasmanian Dolerites. This supports current ideas that the trace element signature of the Ferrar Group is inherited from a uniformly enriched mantle source region.


Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
McKenzie Prillaman

Photographs and field observations yield a more complete historical record of the ebbs and flows of the so-called Blood Falls on Taylor Glacier.


2020 ◽  
Vol 66 (259) ◽  
pp. 790-806
Author(s):  
Chris G. Carr ◽  
Joshua D. Carmichael ◽  
Erin C. Pettit ◽  
Martin Truffer

AbstractGlacial environments exhibit temporally variable microseismicity. To investigate how microseismicity influences event detection, we implement two noise-adaptive digital power detectors to process seismic data from Taylor Glacier, Antarctica. We add scaled icequake waveforms to the original data stream, run detectors on the hybrid data stream to estimate reliable detection magnitudes and compare analytical magnitudes predicted from an ice crack source model. We find that detection capability is influenced by environmental microseismicity for seismic events with source size comparable to thermal penetration depths. When event counts and minimum detectable event sizes change in the same direction (i.e. increase in event counts and minimum detectable event size), we interpret measured seismicity changes as ‘true’ seismicity changes rather than as changes in detection. Generally, one detector (two degree of freedom (2dof)) outperforms the other: it identifies more events, a more prominent summertime diurnal signal and maintains a higher detection capability. We conclude that real physical processes are responsible for the summertime diurnal inter-detector difference. One detector (3dof) identifies this process as environmental microseismicity; the other detector (2dof) identifies it as elevated waveform activity. Our analysis provides an example for minimizing detection biases and estimating source sizes when interpreting temporal seismicity patterns to better infer glacial seismogenic processes.


2012 ◽  
Vol 117 (F3) ◽  
pp. n/a-n/a ◽  
Author(s):  
Joshua D. Carmichael ◽  
Erin C. Pettit ◽  
Matt Hoffman ◽  
Andrew Fountain ◽  
Bernard Hallet
Keyword(s):  

1979 ◽  
Vol 24 (90) ◽  
pp. 483
Author(s):  
David J. Drewry

Abstract Systematic radio echo-sounding during three seasons since 1971–72 has produced data on the configuration of the ice sheet in East Antarctica. In the sector extending inland from southern Victoria Land, the ice sheet exhibits a large ridge which drives ice towards David Glacier in the north and Mulock and Byrd Glaciers to the south. Within 100 km of the McMurdo dry-valley region soundings along ten sub-parallel lines (c. 10 km apart) provides detail on ice surface and flow patterns at the ridge tip. A small surface dome lies just inland of Taylor Glacier. The surface drops by 100 m or more before rising to join the major ridge in East Antarctica.


2014 ◽  
Vol 55 (68) ◽  
pp. 253-259 ◽  
Author(s):  
Dmitry Eliseev ◽  
Dirk Heinen ◽  
Klaus Helbing ◽  
Ruth Hoffmann ◽  
Uwe Naumann ◽  
...  

AbstractThe Enceladus Explorer project is a preparatory study for a future space mission to Saturn’s moon, Enceladus. Its ultimate goal is to probe liquid-water pockets below the ice surface of Enceladus for signatures of life. A probe could be based on the IceMole concept, which melts curved trajectories through the ice. In the Enceladus Explorer project, a specialized IceMole probe for a terrestrial test scenario is in development. The goal of this exploratory study is to probe water from a liquid crevasse close to Blood Falls at Taylor Glacier, Antarctica. To navigate such a probe it is essential to be able to determine its position and monitor its trajectory. Part of the navigation system is the in-ice acoustic positioning system. For this, the head of the IceMole is equipped with acoustic sensors, which receive signals from synchronized acoustic emitters situated at the ice surface. Based on the measured propagation times, the speed of sound in ice and the positions of the emitters at the surface, the position of the IceMole can be determined by trilateration techniques. Here we present the developed acoustic positioning system, which is designed to track the in-ice melting probe up to distances of 100 m in glacier ice. Results from full-system tests in water and a first field test on Morteratschgletscher, Switzerland, are discussed.


Sign in / Sign up

Export Citation Format

Share Document