scholarly journals Sustaining Saturn's Electron Radiation Belts Through Episodic, Global‐Scale Relativistic Electron Flux Enhancements

2020 ◽  
Vol 125 (5) ◽  
Author(s):  
C.‐J. Yuan ◽  
E. Roussos ◽  
Y. Wei ◽  
N. Krupp
2021 ◽  
Author(s):  
Yixin Hao ◽  
Yixin Sun ◽  
Elias Roussos ◽  
Ying Liu ◽  
Peter Kollmann ◽  
...  

<p>The existence of planetary radiation belts with relativistic electron components means that powerful acceleration mechanisms are operating within their volume. Mechanisms that bring charged particles planetward toward stronger magnetic fields can cause their heating. On the basis that electron fluxes in Saturn’s radiation belts are enhanced over discrete energy intervals, previous studies have suggested that rapid inward plasma flows may be controlling the production of their most energetic electrons. However, rapid plasma inflows languish in the planet’s inner magnetosphere, and they are not spatially appealing as a mechanism to form the belts. Here we show that slow, global-scale flows resulting from transient noon-to-midnight electric fields successfully explain the discretized flux spectra at quasi- and fully relativistic energies, and that they are ultimately responsible for the bulk of the highest energy electrons trapped at Saturn. This finding is surprising, given that plasma flows at Saturn are dominated by the planetary rotation; these weak electric field perturbations were previously considered impactful only over a very narrow electron energy range where the magnetic drifts of electrons cancel out with corotation. We also find quantitative evidence that ultrarelativistic electrons in Jupiterʼs radiation belts are accelerated by the same mechanism. Given that similar processes at Earth drive a less efficient electron transport compared to Saturn and Jupiter, the conclusion is emerging that global-scale electric fields can provide powerful relativistic electron acceleration, especially at strongly magnetized and fast-rotating astrophysical objects.</p>


2011 ◽  
Author(s):  
D. Vassiliadis ◽  
Dimitris Vassiliadis ◽  
Shing F. Fung ◽  
Xi Shao ◽  
Ioannis A. Daglis ◽  
...  

1994 ◽  
Vol 99 (A9) ◽  
pp. 17421 ◽  
Author(s):  
W. L. Imhof ◽  
E. E. Gaines ◽  
J. P. McGlennon ◽  
D. N. Baker ◽  
G. D. Reeves ◽  
...  

2021 ◽  
Author(s):  
Christopher Lara ◽  
Pablo S. Moya ◽  
Victor Pinto ◽  
Javier Silva ◽  
Beatriz Zenteno

<p>The inner magnetosphere is a very important region to study, as with satellite-based communications increasing day after day, possible disruptions are especially relevant due to the possible consequences in our daily life. It is becoming very important to know how the radiation belts behave, especially during strong geomagnetic activity. The radiation belts response to geomagnetic storms and solar wind conditions is still not fully understood, as relativistic electron fluxes in the outer radiation belt can be depleted, enhanced or not affected following intense activity. Different studies show how these results vary in the face of different events. As one of the main mechanisms affecting the dynamics of the radiation belt are wave-particle interactions between relativistic electrons and ULF waves. In this work we perform a statistical study of the relationship between ULF wave power and relativistic electron fluxes in the outer radiation belt during several geomagnetic storms, by using magnetic field and particle fluxes data measured by the Van Allen Probes between 2012 and 2017. We evaluate the correlation between the changes in flux and the cumulative effect of ULF wave activity during the main and recovery phases of the storms for different position in the outer radiation belt and energy channels. Our results show that there is a good correlation between the presence of ULF waves and the changes in flux during the recovery phase of the storm and that correlations vary as a function of energy. Also, we can see in detail how the ULF power change for the electron flux at different L-shell We expect these results to be relevant for the understanding of the relative role of ULF waves in the enhancements and depletions of energetic electrons in the radiation belts for condition described.</p>


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
E. E. Woodfield ◽  
R. B. Horne ◽  
S. A. Glauert ◽  
J. D. Menietti ◽  
Y. Y. Shprits ◽  
...  

2016 ◽  
Vol 121 (6) ◽  
pp. 5449-5488 ◽  
Author(s):  
Joseph E. Borovsky ◽  
Thomas E. Cayton ◽  
Michael H. Denton ◽  
Richard D. Belian ◽  
Roderick A. Christensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document