Investigation of the interaction between magnetosheath reconnection and magnetopause reconnection driven by oblique interplanetary tangential discontinuity using three‐dimensional global hybrid simulation

Author(s):  
Zhifang Guo ◽  
Yu Lin ◽  
Xueyi Wang
2007 ◽  
Vol 25 (1) ◽  
pp. 117-144 ◽  
Author(s):  
S. Simon ◽  
A. Boesswetter ◽  
T. Bagdonat ◽  
U. Motschmann ◽  
J. Schuele

Abstract. The interaction between Titan's ionosphere and the Saturnian magnetospheric plasma flow has been studied by means of a three-dimensional (3-D) hybrid simulation code. In the hybrid model, the electrons form a mass-less, charge-neutralizing fluid, whereas a completely kinetic approach is retained to describe ion dynamics. The model includes up to three ionospheric and two magnetospheric ion species. The interaction gives rise to a pronounced magnetic draping pattern and an ionospheric tail that is highly asymmetric with respect to the direction of the convective electric field. Due to the dependence of the ion gyroradii on the ion mass, ions of different masses become spatially dispersed in the tail region. Therefore, Titan's ionospheric tail may be considered a mass-spectrometer, allowing to distinguish between ion species of different masses. The kinetic nature of this effect is emphasized by comparing the simulation with the results obtained from a simple analytical test-particle model of the pick-up process. Besides, the results clearly illustrate the necessity of taking into account the multi-species nature of the magnetospheric plasma flow in the vicinity of Titan. On the one hand, heavy magnetospheric particles, such as atomic Nitrogen or Oxygen, experience only a slight modification of their flow pattern. On the other hand, light ionospheric ions, e.g. atomic Hydrogen, are clearly deflected around the obstacle, yielding a widening of the magnetic draping pattern perpendicular to the flow direction. The simulation results clearly indicate that the nature of this interaction process, especially the formation of sharply pronounced plasma boundaries in the vicinity of Titan, is extremely sensitive to both the temperature of the magnetospheric ions and the orientation of Titan's dayside ionosphere with respect to the corotating magnetospheric plasma flow.


2021 ◽  
Author(s):  
Yann Pfau-Kempf ◽  
Minna Palmroth ◽  
Andreas Johlander ◽  
Lucile Turc ◽  
Markku Alho ◽  
...  

<p>Dayside magnetic reconnection at the magnetopause, which is a major driver of space weather, is studied for the first time in a three-dimensional (3D) realistic setup using the Vlasiator hybrid-Vlasov kinetic model. A noon–midnight meridional plane simulation is extended in the dawn–dusk direction to cover 7 Earth radii. The southward interplanetary magnetic field causes magnetic reconnection to occur at the subsolar magnetopause. Perturbations arising from kinetic instabilities in the magnetosheath appear to modulate the reconnection. Its characteristics are consistent with multiple, bursty, and patchy magnetopause reconnection. It is shown that the kinetic behavior of the plasma, as simulated by the model, has consequences on the applicability of methods such as the four-field junction to identify and analyse magnetic reconnection in 3D kinetic simulations.</p>


2006 ◽  
Vol 24 (1) ◽  
pp. 407-414 ◽  
Author(s):  
S. Simon ◽  
T. Bagdonat ◽  
U. Motschmann ◽  
K.-H. Glassmeier

Abstract. The interaction of a magnetized asteroid with the solar wind is studied by using a three-dimensional hybrid simulation code (fluid electrons, kinetic ions). When the obstacle's intrinsic magnetic moment is sufficiently strong, the interaction region develops signs of magnetospheric structures. On the one hand, an area from which the solar wind is excluded forms downstream of the obstacle. On the other hand, the interaction region is surrounded by a boundary layer which indicates the presence of a bow shock. By analyzing the trajectories of individual ions, it is demonstrated that kinetic effects have global consequences for the structure of the interaction region.


2016 ◽  
Vol 121 (12) ◽  
pp. 11,882-11,895 ◽  
Author(s):  
San Lu ◽  
Y. Lin ◽  
V. Angelopoulos ◽  
A. V. Artemyev ◽  
P. L. Pritchett ◽  
...  

2017 ◽  
Vol 122 (11) ◽  
pp. 11,086-11,099 ◽  
Author(s):  
L. Price ◽  
M. Swisdak ◽  
J. F. Drake ◽  
J. L. Burch ◽  
P. A. Cassak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document