Hybrid-Vlasov modelling of three-dimensional dayside magnetopause reconnection

Author(s):  
Yann Pfau-Kempf ◽  
Minna Palmroth ◽  
Andreas Johlander ◽  
Lucile Turc ◽  
Markku Alho ◽  
...  

<p>Dayside magnetic reconnection at the magnetopause, which is a major driver of space weather, is studied for the first time in a three-dimensional (3D) realistic setup using the Vlasiator hybrid-Vlasov kinetic model. A noon–midnight meridional plane simulation is extended in the dawn–dusk direction to cover 7 Earth radii. The southward interplanetary magnetic field causes magnetic reconnection to occur at the subsolar magnetopause. Perturbations arising from kinetic instabilities in the magnetosheath appear to modulate the reconnection. Its characteristics are consistent with multiple, bursty, and patchy magnetopause reconnection. It is shown that the kinetic behavior of the plasma, as simulated by the model, has consequences on the applicability of methods such as the four-field junction to identify and analyse magnetic reconnection in 3D kinetic simulations.</p>

2021 ◽  
Vol 87 (2) ◽  
Author(s):  
P. Kim ◽  
R. Jorge ◽  
W. Dorland

A simplified analytical form of the on-axis magnetic well and Mercier's criterion for interchange instabilities for arbitrary three-dimensional magnetic field geometries is derived. For this purpose, a near-axis expansion based on a direct coordinate approach is used by expressing the toroidal magnetic flux in terms of powers of the radial distance to the magnetic axis. For the first time, the magnetic well and Mercier's criterion are then written as a one-dimensional integral with respect to the axis arclength. When compared with the original work of Mercier, the derivation here is presented using modern notation and in a more streamlined manner that highlights essential steps. Finally, these expressions are verified numerically using several quasisymmetric and non-quasisymmetric stellarator configurations including Wendelstein 7-X.


2009 ◽  
Vol 27 (2) ◽  
pp. 895-903 ◽  
Author(s):  
D. G. Sibeck

Abstract. We present an analytical model for the magnetic field perturbations associated with flux transfer events (FTEs) on the dayside magnetopause as a function of the shear between the magnetosheath and magnetospheric magnetic fields and the ratio of their strengths. We assume that the events are produced by component reconnection along subsolar reconnection lines with tilts that depend upon the orientation of the interplanetary magnetic field (IMF), and show that the amplitudes of the perturbations generated during southward IMF greatly exceed those during northward IMF. As a result, even if the distributions of magnetic reconnection burst durations/event dimensions are identical during periods of northward and southward IMF orientation, events occurring for southward IMF orientations must predominate in surveys of dayside events. Two factors may restore the balance between events occurring for northward and southward IMF orientations on the flanks of the magnetosphere. Events generated on the dayside magnetopause during periods of southward IMF move poleward, while those generated during periods of northward IMF slip dawnward or duskward towards the flanks. Due to differing event and magnetospheric magnetic field orientations, events that produce weak signatures on the dayside magnetopause during intervals of northward IMF orientation may produce strong signatures on the flanks.


2009 ◽  
Vol 5 (H15) ◽  
pp. 434-435
Author(s):  
A. Lazarian ◽  
G. Kowal ◽  
E. Vishniac ◽  
K. Kulpa-Dubel ◽  
K. Otmianowska-Mazur

AbstractA magnetic field embedded in a perfectly conducting fluid preserves its topology for all times. Although ionized astrophysical objects, like stars and galactic disks, are almost perfectly conducting, they show indications of changes in topology, magnetic reconnection, on dynamical time scales. Reconnection can be observed directly in the solar corona, but can also be inferred from the existence of large scale dynamo activity inside stellar interiors. Solar flares and gamma ray busts are usually associated with magnetic reconnection. Previous work has concentrated on showing how reconnection can be rapid in plasmas with very small collision rates. Here we present numerical evidence, based on three dimensional simulations, that reconnection in a turbulent fluid occurs at a speed comparable to the rms velocity of the turbulence, regardless of the value of the resistivity. In particular, this is true for turbulent pressures much weaker than the magnetic field pressure so that the magnetic field lines are only slightly bent by the turbulence. These results are consistent with the proposal by Lazarian & Vishniac (1999) that reconnection is controlled by the stochastic diffusion of magnetic field lines, which produces a broad outflow of plasma from the reconnection zone. This work implies that reconnection in a turbulent fluid typically takes place in approximately a single eddy turnover time, with broad implications for dynamo activity and particle acceleration throughout the universe. In contrast, the reconnection in 2D configurations in the presence of turbulence depends on resistivity, i.e. is slow.


Author(s):  
Andrew L Haynes ◽  
Clare E Parnell ◽  
Klaus Galsgaard ◽  
Eric R Priest

The heating of the solar corona is probably due to reconnection of the highly complex magnetic field that threads throughout its volume. We have run a numerical experiment of an elementary interaction between the magnetic field of two photospheric sources in an overlying field that represents a fundamental building block of the coronal heating process. The key to explaining where, how and how much energy is released during such an interaction is to calculate the resulting evolution of the magnetic skeleton. A skeleton is essentially the web of magnetic flux surfaces (called separatrix surfaces) that separate the coronal volume into topologically distinct parts. For the first time, the skeleton of the magnetic field in a three-dimensional numerical magnetohydrodynamic experiment is calculated and carefully analysed, as are the ways in which it bifurcates into different topologies. A change in topology normally changes the number of magnetic reconnection sites. In our experiment, the magnetic field evolves through a total of six distinct topologies. Initially, no magnetic flux joins the two sources. Then, a new type of bifurcation, called a global double-separator bifurcation , takes place. This bifurcation is probably one of the main ways in which new separators are created in the corona (separators are field lines at which three-dimensional reconnection takes place). This is the first of five bifurcations in which the skeleton becomes progressively more complex before simplifying. Surprisingly, for such a simple initial state, at the peak of complexity there are five separators and eight flux domains present.


Author(s):  
Kyung Sun Park

We performed high-resolution three-dimensional global MHD simulations to determine the impact of weak southward interplanetary magnetic field (IMF) (Bz = −2 nT) and slow solar wind to the Earth’s magnetosphere and ionosphere. We considered two cases of differing, uniform time resolution with the same grid spacing simulation to find any possible differences in the simulation results. The simulation results show that dayside magnetic reconnection and tail reconnection continuously occur even during the weak and steady southward IMF conditions. A plasmoid is generated on closed plasma sheet field lines. Vortices are formed in the inner side of the magnetopause due to the viscous-like interaction, which is strengthened by dayside magnetic reconnection. We estimated the dayside magnetic reconnection which occurred in relation to the electric field at the magnetopause and confirmed that the enhanced electric field is caused by the reconnection and the twisted structure of the electric field is due to the vortex. The simulation results of the magnetic field and the plasma properties show quasi-periodic variations with a period of 9–11 min between the appearances of vortices. Also the peak values of the cross-polar cap potential are both approximately 50 kV, the occurrence time of dayside reconnections are the same, and the polar cap potential patterns are the same in both cases. Thus, there are no significant differences in outcome between the two cases.


2008 ◽  
Vol 26 (11) ◽  
pp. 3571-3583
Author(s):  
R. Maggiolo ◽  
J. A. Sauvaud ◽  
I. Dandouras ◽  
E. Luceck ◽  
H. Rème

Abstract. From 15 February 2004, 20:00 UT to 18 February 2004, 01:00 UT, the solar wind density dropped to extremely low values (about 0.35 cm−3). On 17 February, between 17:45 UT and 18:10 UT, the CLUSTER spacecraft cross the dayside magnetopause several times at a large radial distance of about 16 RE. During each of these crossings, the spacecraft detect high speed plasma jets in the dayside magnetopause and boundary layer. These observations are made during a period of southward and dawnward Interplanetary Magnetic Field (IMF). The magnetic shear across the local magnetopause is ~90° and the magnetosheath beta is very low (~0.15). We evidence the presence of a magnetic field of a few nT along the magnetopause normal. We also show that the plasma jets, accelerated up to 600 km/s, satisfy the tangential stress balance. These findings strongly suggest that the accelerated jets are due to magnetic reconnection between interplanetary and terrestrial magnetic field lines northward of the satellites. This is confirmed by the analysis of the ion distribution function that exhibits the presence of D shaped distributions and of a reflected ion population as predicted by theory. A quantitative analysis of the reflected ion population reveals that the reconnection process lasts about 30 min in a reconnection site located at a very large distance of several tens RE from the Cluster spacecraft. We also estimate the magnetopause motion and thickness during this event. This paper gives the first experimental study of magnetic reconnection during such rare periods of very low solar wind density. The results are discussed in the frame of magnetospheric response to extremely low solar wind density conditions.


2016 ◽  
Vol 34 (11) ◽  
pp. 943-959 ◽  
Author(s):  
Yann Pfau-Kempf ◽  
Heli Hietala ◽  
Steve E. Milan ◽  
Liisa Juusola ◽  
Sanni Hoilijoki ◽  
...  

Abstract. We present a scenario resulting in time-dependent behaviour of the bow shock and transient, local ion reflection under unchanging solar wind conditions. Dayside magnetopause reconnection produces flux transfer events driving fast-mode wave fronts in the magnetosheath. These fronts push out the bow shock surface due to their increased downstream pressure. The resulting bow shock deformations lead to a configuration favourable to localized ion reflection and thus the formation of transient, travelling foreshock-like field-aligned ion beams. This is identified in two-dimensional global magnetospheric hybrid-Vlasov simulations of the Earth's magnetosphere performed using the Vlasiator model (http://vlasiator.fmi.fi). We also present observational data showing the occurrence of dayside reconnection and flux transfer events at the same time as Geotail observations of transient foreshock-like field-aligned ion beams. The spacecraft is located well upstream of the foreshock edge and the bow shock, during a steady southward interplanetary magnetic field and in the absence of any solar wind or interplanetary magnetic field perturbations. This indicates the formation of such localized ion foreshocks.


Author(s):  
David I. Pontin

Magnetic reconnection is a fundamental process in a plasma that facilitates the release of energy stored in the magnetic field by permitting a change in the magnetic topology. In this paper, we present a review of the current state of understanding of magnetic reconnection. We discuss theoretical results regarding the formation of current sheets in complex three-dimensional magnetic fields and describe the fundamental differences between reconnection in two and three dimensions. We go on to outline recent developments in modelling of reconnection with kinetic theory, as well as in the magnetohydrodynamic framework where a number of new three-dimensional reconnection regimes have been identified. We discuss evidence from observations and simulations of Solar System plasmas that support this theory and summarize some prominent locations in which this new reconnection theory is relevant in astrophysical plasmas.


2020 ◽  
Author(s):  
Walter Gonzalez ◽  
Daiki Koga

<p>Magnetic reconnection permits topological rearrangements of the interplanetary and magnetospheric magnetic fields and the entry of solar wind mass, energy, and momentum into the magnetosphere. Thus, magnetic reconnection is a key issue to understand space weather. However, it hasnot been fully understood yet under which interplanetary/magnetosheath conditions magnetic reconnection takes place more effectively at the dayside magnetopause. For this purpose,  in the present study 25 dayside magnetopause reconnection events are investigated using the Time History of Events and Macroscale Interactions during Substorms ( THEMIS ) spacecraft  observations. It was found, (1) that the reconnection electric field is proportional to the interplanetary electric field, (2) that the reconnection electric field is inversely proportional to the solar wind-Alfvén Mach number,  (3) that thereconnection outflow speed is proportional to the solar wind Alfvén speed, and (4) that the reconnection outflow speed is  inversely proportional to the magnetosheath plasma beta. Finally, it is shown that the range of magnetic shear angles for which magnetic reconnection should occur is restricted to large shears as the magnetosheath flow direction becomes more perpendicular to the direction of the local magnetopause normal vector. Since these results refer to fairly typical solar wind-Alfvén Mach number condition, they may not apply to more extreme cases.</p>


2016 ◽  
Vol 82 (5) ◽  
Author(s):  
Z. Akbari ◽  
M. Hosseinpour ◽  
M. A. Mohammadi

In a three-dimensional non-null magnetic reconnection, the process of magnetic reconnection takes place in the absence of a null point where the magnetic field vanishes. By randomly injecting a population of 10 000 protons, the trajectory and energy distribution of accelerated protons are investigated in the presence of magnetic and electric fields of a particular model of non-null magnetic reconnection with the typical parameters for the solar corona. The results show that protons are accelerated along the magnetic field lines away from the non-null point only at azimuthal angles where the magnitude of the electric field is strongest and therefore particles obtain kinetic energies of the order of thousands of MeV and even higher. Moreover, the energy distribution of the population depends strongly on the amplitude of the electric and magnetic fields. Comparison shows that a non-null magnetic reconnection is more efficient in accelerating protons to very high GeV energies than a null-point reconnection.


Sign in / Sign up

Export Citation Format

Share Document